
One Optimized I/O Configuration per HPC Application:
Leveraging the Configurability of Cloud

Mingliang Liu, Jidong Zhai and Yan Zhai
Department of Computer Science and Technology, Tsinghua University

{liuml07,zhaijidong,zhaiyan920}@gmail.com
Xiaosong Ma

Department of Computer Science, North Carolina State University
Computer Science and Mathematics Department, Oak Ridge National Laboratory

ma@csc.ncsu.edu
Wenguang Chen

Department of Computer Science and Technology, Tsinghua University
cwg@tsinghua.edu.cn

ABSTRACT
There is a trend to migrate HPC (High Performance Com-
puting) applications to cloud platforms, such as the Ama-
zon EC2 Cluster Compute Instances (CCIs). While existing
research has mainly focused on the performance impact of
virtualized environments and interconnect technologies on
parallel programs, we suggest that the configurability en-
abled by clouds is another important dimension to explore.

Unlike on traditional HPC platforms, on a cloud-resident
virtual cluster it is easy to change the I/O configurations,
such as the choice of file systems, the number of I/O nodes,
and the types of virtual disks, to fit the I/O requirements of
different applications. In this paper, we discuss how cloud
platforms can be employed to form customized and balanced
I/O subsystems for individual I/O-intensive MPI applica-
tions. Through our preliminary evaluation, we demonstrate
that different applications will benefit from individually tai-
lored I/O system configurations. For a given I/O-intensive
application, different I/O settings may lead to significant
overall application performance or cost difference (up to
2.5-fold). Our exploration indicates that customized system
configuration for HPC applications in the cloud is important
and non-trivial.

1. INTRODUCTION
Cloud computing is gaining popularity in many areas, in-

cluding High Performance Computing (HPC). Beside being
CPU-intensive, HPC applications are sensitive to network
bandwidth/latency as well as the performance of I/O stor-
age systems, making them particularly challenging to run ef-
ficiently in clouds. Amazon EC2, the leading IaaS provider,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
APSys’11 July 11-12th, 2011 Shanghai, China
Copyright 2011 ACM 978-1-4503-1179-3/11/07 ...$10.00.

released cluster compute instances (CCIs) in July 2010 [3,6],
to explicitly target HPC applications by offering dedicated
physical node allocation, powerful CPUs, and improved in-
terconnection.

Even with such new cloud platforms provided for HPC
workloads, the efficiency and cost-effectiveness of cloud com-
puting for HPC applications are still to be determined [7].
For example, our recent evaluation indicates that although
the EC2 CCIs are able to provide significantly better perfor-
mance compared to earlier instance classes, small message
dominated applications suffer from the long communication
latency on cloud platforms [1]. Apparently, the feasibility of
cloud computing is highly workload-dependent and heavily
depends on individual applications’ characteristics. There-
fore, an important question is: What kind of applications
are suitable to execute in cloud rather than using tra-
ditional resources (i.e., supercomputers or in-house
small clusters)?

In assessing HPC applications’ suitability for cloud execu-
tion, most existing studies have focused on the the perfor-
mance impact of virtualized environments and interconnect
technologies on cloud platforms. In this paper, we suggest
that the unique configurability provided by cloud is another
important dimension to consider. To make our discussion
succinct and clear, in this paper we limit our discussion
to I/O configurability on I/O-intensive HPC applications,
though the topic can be extended to other application do-
mains and beyond I/O.

Besides the well-known elasticity in resource acquisition,
usage, and releasing, cloud platforms provide a level of con-
figurability impossible with traditional HPC platforms. Un-
like supercomputers or in-house clusters, which only offer
fixed, one-size-fits-all configurations, clouds allow users to
customize their own virtual cluster and perform reconfigu-
ration at the user, application, or even job level. For exam-
ple, on traditional parallel computers the users will not be
able to choose or configure the shared or parallel file system,
but on EC2 one can easily set up a personalized I/O subsys-
tem. For example, users can install and select from multiple
file systems such as NFS, PVFS [4], and Lustre [5]. For
a selected parallel file system, they can configure the num-
ber of I/O servers and their placement. Further, users can

choose from different types of low-level storage devices, the
ephemeral disk and Elastic Block Store (EBS), or use a com-
bination of them. Changes in configuration can typically be
deployed quickly, with simple modifications made to scripts.
Therefore, the cloud enables users to setup optimized I/O
configurations for each application upon its execution, in-
stead of configuring an I/O sub-system for all applications
that may run in the system. Intuitively, the better configura-
bility of cloud should give it competitive advantage against
in-house clusters and supercomputers.

To demonstrate this, we perform a few experiments and
conduct related analysis on Amazon EC2 CCIs to see how
different I/O sub-system configurations could affect the per-
formance of I/O-intensive MPI applications. We also use
several micro-benchmarks to evaluate the cloud storage de-
vices and different file systems, which help us understand
the low level I/O behavior in cloud systems and prune the
experimental space.

This work distinguishes itself from past investigations on
HPC in the cloud in the following aspects:

• We identify the configurability enabled by cloud plat-
forms as an important factor to consider, especially for
I/O-intensive HPC applications.

• We conduct a qualitative discussion on the storage sys-
tem configuration options on cloud platforms and their
potential impact on HPC application performance as
well as user experience.

• We evaluate two applications with different I/O config-
urations and observe large performance gaps between
these configurations. The result suggests that per-
application optimization on cloud I/O configuration
deserves further investigation.

The rest of the paper is organized as follows. Section 2
introduces the Amazon EC2 CCI storage system and eval-
uation of multiple storage options on it. Section 3 shows
our preliminary result of two applications with different I/O
sub-system configurations. Section 4 discusses related work
and conclusion is given in Section 5.

2. STORAGE SYSTEM CUSTOMIZING OP-
TIONS IN THE CLOUD

In this section, we discuss several key parameters and re-
lated issues in setting up customized storage sub-system on
cloud-based virtual clusters.

2.1 File System Selection
A parallel or shared file system is indispensable for par-

allel program execution, which provides a unified persistent
storage space to facilitate application launching, input and
output file accesses, and parallel I/O support. Typically,
supercomputers or large clusters are equipped with parallel
file systems such as Lustre [5], GPFS [11], and PVFS [4],
while smaller clusters tend to choose shared/distributed file
systems such as NFS. However, end users seldom have the
option of choosing or configuring file systems on traditional
HPC facilities. One outstanding advantage of cloud HPC
execution is that users can choose a parallel or shared file
system based on individual applications’ demands, and can
switch between different selections quite easily and quickly.

In choosing an appropriate file system, users need to con-
sider their applications’ I/O intensity and access pattern.
For example, a simple NFS installation may suffice if the
application has little I/O demand, or a low I/O concurrency
(seen in parallel codes where one process aggregates and
writes all output data, a rather common behavior in simula-
tions). In contrast, applications that write large, shared files
usually benefit from parallel file systems, especially those
heavily optimized for MPI-IO operations. Especially, par-
allel file systems will allow users to scale up the aggregate
I/O throughput by adding more I/O servers, while the sin-
gle NFS server may easily become a bottleneck under heavy
I/O loads. Depending on the variability among per-file ac-
cess patterns, users may elect to use file systems that give
extra flexibility in performance optimization, such as the
per-file striping setting allowed by PVFS.

In our preliminary evaluation presented in Section 3, we
demonstrate the performance difference of an I/O intensive
parallel program running on NFS and PVFS, two popular
file systems on clusters. Due to the space limit, we confine
our discussion here to these two file systems. However, we
believe that the potential to gain performance and/or cost
benefits via storage option tuning apply to other file system
choices as well.

2.2 Storage Device Selection
Another important storage parameter is the type of un-

derlying storage devices. Cloud platforms typically provide
multiple storage choices, with different levels of abstraction
and access interfaces. For example, with EC2 CCIs, each
instance can access three forms of storage: (1) the local
block storage (“ephemeral”) with 1690GB capacity, where
user data are not saved once the instances are released, (2)
off-instance Elastic Block Store (EBS), where volumes can
be attached to an EC2 instance as block storage devices,
whose content persist across computation sessions, and (3)
Simple Storage Service (S3), Amazon’s key-value based ob-
ject storage, accessed through a web services interface.

For HPC applications, the ephemeral and EBS are more
apparent choices as storage devices, as they do not require
modifications to applications. S3, on the other hand, is de-
signed more for Internet or database applications and lacks
general file system interfaces needed in HPC programs.

Beside data consistency, the ephemeral and EBS devices
possess different performance characteristics and usage con-
straints. One instance can only mount up to two ephemeral
disks, while the number of EBS disks attached to it can
be almost unlimited. In our preliminary benchmarking, we
found the performance gap between the EBS and ephemeral
disks small, especially for writes (the major I/O operation
in numerical parallel programs), as to be demonstrated in
Figure 1. However, we observed that the ephemeral disk
has better availability and lower performance variance. This
may be the result of different disk affinity and different virtu-
alization techniques. Finally, the ephemeral disks are free,
while EBS disks are charged by the storage capacity con-
sumed.

Therefore, the choice between these two storage devices
again depends on the needs of individual applications or
users. For instance, production runs that generate results
to be migrated to and visualized on users’ local platforms
may get the best benefit from using ephemeral disks, as per-
sistent storage is not needed. On the other hand, repeated

processing of the same dataset (such as sequence database
searches) will benefit from using the EBS. As another exam-
ple, bandwidth-thirsty applications relying on parallel I/O
with file striping may suffer from the load imbalance intro-
duced by the high performance variability of EBS disks.

2.3 File System Internal Parameters

16M 128M 512M 1G 2G 4G

0

50

100

150

200

250

300

350

W
ri
te

 B
a
n
d
w

id
th

 (
M

B
/s

)

Block Size (Byte)

 EBS-sync

 Ephemeral-sync

 EBS-async

 Ephemeral-async

Figure 1: NFS write bandwidth, measured with IOR

For NFS, one sample internal parameter is the choice of
write modes: sync vs. async. Figure 1 shows the results
from running IOR [12], a parallel I/O benchmark, with these
two modes. We measured the NFS write bandwidth, using
two client instances, each running 8 IOR processes. The
16 processes write a shared file collectively, each dumping a
contiguous partition (block). The block size is varied from
16MB to 4GB. As shown in Figure 1, with small data blocks,
the async mode is able to offer a significant performance
advantage, due to the buffering effect at server side. It will
be a sound choice for applications that output a moderate
amount of data and do not require that such data are flushed
to secondary storage, such as periodic checkpoints (whose
loss can be compensated by re-executing a certain number
of computation timesteps in most numerical simulations).
We use the async mode for NFS server by default in the
following experiments.

8 16 32 64 128 256

0

50

100

150

200

W
ri

te
 B

a
n

d
w

id
th

 (
M

B
/s

)

Num of Processes

 1-disk

 2-disks

 4-disks

 8-disks

Figure 2: NFS write bandwidth with EBS disks
combining into a software RAID0

On cloud platforms, a user can have tremendous flexibil-
ity in scaling up the aggregate I/O capacity and bandwidth,

according to the I/O demands of their applications. For par-
allel file systems, this can be done by increasing the number
of I/O servers, while the NFS could not scale because of the
single server bottleneck. For all file systems, we can also
improve each I/O server’s capability by increasing the num-
ber of disks attached to it. One simple way of doing this
is to combine multiple disks into a software RAID0 parti-
tion. However, one may not obtain expected scaling effect
when adding (and paying for) more disks to an I/O server.
Figure 2 illustrates this with another set of IOR collective
write experiments, where we fixed the size of data block per
process (2GB) and varied the number of processes. We eval-
uated different numbers (1, 2, 4, 8) of EBS disks forming a
single RAID0 partition on the NFS server, and found that
the system hits its peak bandwidth when only two disks are
mounted. There are many possible reasons for this, such as
the virtualized layer between storage volumes and multiple
users, the network connection between the physical node and
the physical storage devices, and the performance variance
of EBS devices. In our future work we plan to investigate the
disk scaling problem, as a part of automatic cloud storage
configuration.

In addition, each file system has many parameters (such
as striping factor, unit size, metadata server placement and
disk synchronization), most of which can be configured the
same way on both the cloud and the in-house cluster plat-
forms. However, there are exceptions due to the difference in
usage model brought by the virtualized cluster environment
on clouds. For example, the compute resource of an I/O
server is not fully utilized if the I/O server process occupies
an 8-core virtual machine. Unlike on a static cluster, where
an I/O server is possibly shared among multiple applications
and/or users, a cloud-based virtual cluster is typically used
for a dedicated run. Therefore, it is an interesting problem
to explore the I/O server and metadata server placement on
cloud instances, to achieve better resource utilization and
overall cost-effectiveness. In Section 3 we will report empir-
ical results with sample placement settings.

3. PRELIMINARY APPLICATIONS RESULTS

3.1 Platform Description
Our tests use the new HPC-oriented Amazon EC2 Cluster

Compute Instances (CCIs) available since July 2010. Each
CCI has 2 quad-core Intel Xeon X5570 ”Nehalem” proces-
sors, with 23GB of memory. Each instance is allocated to
users in a dedicated manner, unlike those in most other EC2
instance classes [3]. The CCIs are interconnected with 10
Gigabit Ethernet. Due to the unstable availability of EBS
storage that we recently encountered, all our experiments in
this section use the ephemeral disks.

Regarding software settings, we use the Cluster Instances
Amazon Linux AMI 2011.02.1 associated with CCIs, the In-
tel compiler 11.1.072 and Intel MPI 4.0.1. The default com-
piler optimization level is −O3.

3.2 Selected HPC Applications
Our experiments evaluated two parallel applications. BTIO

is the I/O-enabled version of the BT benchmark in NPB
suite [13]. The program solves Navier-Stokes equations in
three spatial dimensions, which are discretized, unsteady
and compressible. Each of the processor will be in charge
of multiple Cartesian subsets of entire data set. The I/O

strategy employs collective buffering and writing via MPI-
IO interface, to avoid heavy fragmentation caused by writing
per-process output files. The default I/O frequency is used,
appending to the shared output file every 5 computation
time steps, resulting in an output file sized around 6.4GB.
The BT problem size was class C for all the tests, built with
FULL subtype. POP is an ocean circulation model which
solves the three-dimension primitive equations for fluid mo-
tions on the sphere [9] and exhibits a read-once-write-many
I/O pattern. It reads a setup file at the initialization phase
and performs write operation in native Fortran I/O interface
at each period time step. We used the POP grid dimensions
of 320x384x20 and the total output size is about 6GB, ag-
gregated and written by process 0.

3.3 BTIO Results
In this section, we present the performance and total com-

putation cost of running BTIO on EC2 CCIs, using NFS
(async mode) and PVFS respectively. For each storage op-
tion, we also present the performance difference between two
I/O server placement modes: I/O servers occupy separate
compute instances under the dedicated mode, and co-reside
instances with compute processes under the part-time mode.

16 36 64 81 100 121

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

T
o
ta

l
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Num of Processes

 NFS-Dedicated

 NFS-Parttime

 PVFS-1-Server

 PVFS-2-Server

 PVFS-4-Server

 PVFS-4-Server-Part

Figure 3: BTIO total execution time

Figure 3 shows the total execution time of BTIO under
different file system configurations. There are up to 4 I/O
servers, each mounting two ephemeral disks with software
RAID0. For PVFS, one of the I/O servers acts as the meta-
data server. From the results, we can see that for BTIO,
PVFS beats NFS in all test cases. For example, there is
an up to 60% performance improvement from using NFS
(with one dedicated server) to using PVFS (with 4 dedi-
cated servers). The performance gain is more likely due to
the collective MPI-IO optimizations contained in the PVFS
design, as even with just one I/O servers, PVFS significantly
outperforms NFS. Also, the NFS performance appears to
have a much higher variance compared to that of PVFS. In-
terestingly, NFS performs better when the I/O server runs
in the part-time mode, which can be partly attributed to
the enhanced data locality and reduced network contention.
However, we doubt that this factor alone causes the large
performance difference observed and are carrying out more
detailed investigation.

Judging by the I/O bandwidth measured from BTIO,
PVFS performance scales well with increased number of I/O

servers (results not plotted due to space limit). However, the
scalability does not reflect well in Figure 3, the overall per-
formance chart. This is due to the total portion of execution
time devoted to I/O. For this strong-scaling experiment we
expect to see that I/O gains more weight in the execution
time, but the computation component of BT does not scale
well on Amazon EC2, due to the unsatisfactory intercon-
nection. Therefore as the number of processes increases,
the total percentage of time spent on I/O is maintained at
around 10%.

16 36 64 81 100 121

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
o
ta

l
C

o
s
t

($
)

Num of Processes

 NFS-Dedicated
 NFS-Parttime
 PVFS-1-Server
 PVFS-2-Server
 PVFS-4-Server
 PVFS-4-Server-Part

Figure 4: The total cost of BTIO executions

A related issue is the total cost of execution, when we
factor in the total number of instances needed. Figure 4
shows the cost comparison derived from the BTIO results,
using the Amazon charging rate of $1.6 per instance per
hour. Here we can see the appeal of using part-time I/O
servers. In addition, at a small execution scale, NFS with
one part-time server actually appears to be the most cost-
effective option.

3.4 POP Results
We run POP with similar I/O configurations (Figure 5).

Unlike with BTIO, here NFS (async mode at server side)
outperforms PVFS across all configurations. There are sev-
eral possible reasons. First, POP has process 0 carry out
all I/O tasks, making the parallel I/O support that PVFS
was designed for less useful and the network communica-
tion more bottleneck-prone in I/O. Second, POP does I/O
via POSIX interfaces, which is not optimized in PVFS. Due
to its heavy communication with small messages, POP does
not scale on EC2, as can be seen from Figure 5. However, its
I/O behavior is still representative in parallel applications.

4. RELATED WORK
Recently, there have been a series of research efforts fo-

cusing on the performance of using public clouds for high
performance computing. Most of previous work are focus-
ing on computation and communication behavior running
on clouds. Very little work has investigated I/O and stor-
age issues in virtualized or cloud environments. Some of
them focused on long-term storage or inter-job or inter-task
data flow. For example, Juve et al. studied the performance
and cost of different storage options for scientific workflows
running on Amazon EC2 [8]. Palankar et al. assessed the
feasibility of using Amazon S3 for scientific grid comput-
ing [10]. Abe et al. constructed pWalrus, which provides

16 32 64 128 196

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

T
o

ta
l
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Num of Processes

 NFS-parttime

 PVFS-2-Server

 PVFS-4-Server

 PVFS-4-Server-part

Figure 5: POP total execution time

S3-like storage access on top of the PVFS parallel file sys-
tem on an open-source cloud [2]. Yu and Vetter studied
parallel I/O in Xen-based HPC, but the environment used
only have virtualized compute nodes and the authors only
tested at most 16 processes [14]. To our best knowledge,
our work is the first to evaluate different parallel/shared file
system settings for parallel I/O on public clouds.

5. CONCLUSION
In this paper, we demonstrate that the unique configura-

bility advantage offered by public clouds may bring oppor-
tunities for HPC applications to achieve significant perfor-
mance or cost improvement. In particular, we illustrate
the impact of virtual cluster configurability by assessing
the impact of I/O system customization on the Amazon
EC2 system. Our results indicate that for I/O-intensive
applications, cloud-based clusters enable users to build per-
application parallel file systems, where no one-size-fits-all
parallel I/O solution can satisfy the needs of all applica-
tions. In the future, we will try to explore how the storage
options interact with the characteristics of HPC applications
and finally to automate the process of choosing I/O storage
options for an individual application.

6. ACKNOWLEDGEMENT
We thank the anonymous reviewers for their valuable feed-

backs. We’d like to thank Scott Mcmillan, Bob Kuhn and
Nan Qiao from Intel for their interest, insights and sup-
port. This research was supported by National High-Tech
Research and Development Plan (863 plan) 2006AA01A105,
National Natural Science Foundation of China under Grant
No. 61073175. It was also sponsored in part by NSF grants
0546301 (CAREER), 0915861, 0937908, and 0958311, in ad-
dition to a joint faculty appointment between Oak Ridge
National Laboratory and NC State University, as well as a
senior visiting scholarship at Tsinghua University.

7. REFERENCES
[1] Technical report r2011.4.10. Technical report,

Tsinghua University.
http://www.hpctest.org.cn/resources/cloud.pdf.

[2] Y. Abe and G. Gibson. pWalrus: Towards Better
Integration of Parallel File Systems into Cloud
Storage. In Workshop on Interfaces and Abstractions
for Scientific Data Storage, 2010.

[3] Amazon Inc. High Performance Computing (HPC).
http://aws.amazon.com/ec2/hpc-applications/, 2011.

[4] P. Carns, W. Ligon III, R. Ross, and R. Thakur.
PVFS: A parallel file system for Linux clusters. In
Proceedings of the 4th annual Linux Showcase &
Conference-Volume 4, pages 28–28. USENIX
Association, 2000.

[5] Cluster File Systems, Inc. Lustre: A scalable,
high-performance file system.
http://www.lustre.org/docs/whitepaper.pdf, 2002.

[6] N. Hemsoth. Amazon adds hpc capability to ec2. HPC
in the Cloud, July 2010.

[7] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon,
S. Cholia, J. Shalf, H. Wasserman, and N. Wright.
Performance analysis of high performance computing
applications on the amazon web services cloud. In 2nd
IEEE International Conference on Cloud Computing
Technology and Science, pages 159–168. IEEE, 2010.

[8] G. Juve, E. Deelman, K. Vahi, G. Mehta,
B. Berriman, B. P. Berman, and P. Maechling. Data
sharing options for scientific workflows on amazon ec2.
In SC’10, pages 1–9, 2010.

[9] LANL. Parallel ocean program (pop).
http://climate.lanl.gov/Models/POP, April 2011.

[10] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and
S. Garfinkel. Amazon S3 for Science Grids: A Viable
Solution? In Proceedings of the International
Workshop on Data-Aware Distributed Computing.
ACM, 2008.

[11] F. Schmuck and R. Haskin. GPFS: a shared-disk file
system for large computing clusters. In Proceedings of
the First Conference on File and Storage Technologies,
2002.

[12] H. Shan, K. Antypas, and J. Shalf. Characterizing and
predicting the I/O performance of HPC applications
using a parameterized synthetic benchmark. In SC’08,
page 42. IEEE Press, 2008.

[13] P. Wong and R. der Wijngaart. Nas parallel
benchmarks i/o version 2.4. NASA Ames Research
Center Tech. Rep. NAS-03-002, 2003.

[14] W. Yu and J. S. Vetter. Xen-Based HPC: A Parallel
I/O Perspective. In IEEE International Symposium on
Cluster Computing and the Grid. IEEE Computer
Society, 2008.

http://www.hpctest.org.cn/resources/cloud.pdf
http://climate.lanl.gov/Models/POP

	Introduction
	Storage System Customizing Options in the Cloud
	File System Selection
	Storage Device Selection
	File System Internal Parameters

	Preliminary Applications Results
	Platform Description
	Selected HPC Applications
	BTIO Results
	POP Results

	Related Work
	Conclusion
	Acknowledgement
	References

