
Process Mapping for MPI Collective Communications�

Jin Zhang, Jidong Zhai, Wenguang Chen, and Weimin Zheng

Department of Computer Science and Technology, Tsinghua University, China
{jin-zhang02,dijd03}@mails.tsinghua.edu.cn,

{cwg,zwm-dcs}@tsinghua.edu.cn

Abstract. It is an important problem to map virtual parallel processes to physical
processors (or cores) in an optimized way to get scalable performance due to
non-uniform communication cost in modern parallel computers. Existing work
uses profile-guided approaches to optimize mapping schemes to minimize the
cost of point-to-point communications automatically. However, these approaches
cannot deal with collective communications and may get sub-optimal mappings
for applications with collective communications.

In this paper, we propose an approach called OPP (Optimized Process Place-
ment) to handle collective communications which transforms collective commu-
nications into a series of point-to-point communication operations according to
the implementation of collective communications in communication libraries.
Then we can use existing approaches to find optimized mapping schemes which
are optimized for both point-to-point and collective communications.

We evaluated the performance of our approach with micro-benchmarks which
include all MPI collective communications, NAS Parallel Benchmark suite and
three other applications. Experimental results show that the optimized process
placement generated by our approach can achieve significant speedup.

1 Introduction

Modern parallel computers, such as SMP (Symmetric Multi-Processor) clusters, multi-
clusters and BlueGene/L-like supercomputers, exhibit non-uniform communication
cost. For example, in SMP clusters, intra-node communication is usually much faster
than inter-node communication. In multi-clusters, the bandwidth among nodes inside a
single cluster is normally much higher than the bandwidth between two clusters. Thus,
it is important to map virtual parallel processes to physical processors (or cores) in an
optimized way to get scalable performance.

For the purpose of illustration, we focus on the problem of optimized process map-
ping for MPI (Message Passing Interface) applications on SMP clusters in this paper1.

The problem of process mapping can be formalized to a graph mapping problem
which finds the optimized mapping between the communication graph of applications

� This work is supported by Chinese National 973 Basic Research Program under Grant No.
2007CB310900 and National High-Tech Research and Development Plan of China (863 plan)
under Grant No. 2006AA01A105.

1 MPI ranks are used commonly to indicate MPI processes. We use terms MPI ranks and MPI
processes interchangeably.

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 81–92, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



82 J. Zhang et al.

and the topology graph of the underlying parallel computer systems. Existing research
work, such as MPI/SX [1], MPI-VMI [2] and MPIPP [3], addresses this problem by find-
ing optimized process mapping for point-to-point communications. However, they all
ignore collective communications which are also quite sensitive to process mapping.

In this paper, we propose a way to optimize process mapping for collective com-
munications. Our approach called OPP is based on the observation that most collective
communications are implemented through a series of point-to-point communications.
Thus we can transform collective communications into a series of point-to-point com-
munications according to their implementation in communication libraries. Then we
can use the existing framework [3] to find out the optimized process mapping for whole
applications.

The contributions of this paper can be summarized as follows:

– A method to find optimized mapping scheme for a given collective operation by
decomposing it to a series of point-to-point communications.

– Integration of the above method with existing process mapping research work to
obtain optimized process mapping for whole parallel applications which have both
point-to-point communications and collective communications.

– We perform extensive experiments with micro-benchmarks, the NAS Parallel
Benchmark suite (NPB) [4] and three other applications to demonstrate the
effectiveness of our method.

Our paper is organized as follows, in Section 2 we discuss the related work, and
Section 3 describes the brief framework about process placement mechanism. Section 4
introduces the method to generate communication topology of parallel applications.
And the experimental environment and experimental results are shown in Section 5 and
Section 6. We discuss the interaction between process mapping and collective commu-
nication optimization and propose an alternative way to deal with the process placement
problem in Section 7. Conclusion is finally made in Section 8.

2 Related Works

Various process mapping approaches have been proposed to optimize the communica-
tion performance for message passing applications in SMP clusters and multi-clusters
[5, 6, 3]. MPICH-VMI [2] proposes a profile-guided approach to obtain the application
communication topology, and uses general graph partitioning algorithm to find opti-
mized mapping from parallel processes to processors. But MPICH-VMI requires users
to provide the network topology of the target platform. MPIPP [3] makes the map-
ping procedure more automatically by employing a tool to probe the hardware topology
graph so that it can generate optimized mapping without users’ knowledge on either ap-
plications or target systems. MPIPP also proposes a new mapping algorithm which is
more effective for multi-clusters than previous work. Topology mapping on BlueGene/L
has been studied in [7, 8] which describe a comprehensive topology mapping library
for mapping MPI processes onto physical processors with three-dimensional grid/torus
topology. However, none of the above work handles the problem of optimizing pro-
cess mapping for collective communications, and may get sub-optimal process mapping
results for applications with collective communications.



Process Mapping for MPI Collective Communications 83

Much work has been done on optimized implementations of collective communi-
cations. For example, Magpie [9] is a collective communication library optimized for
wide area systems. Sanders et al.[10], Sistare et al.[11] and Tipparaju et al.[12] discuss
various approaches to optimize collective communication algorithms for SMP clus-
ters. Some work focuses on using different algorithms for different message size, such
as [13, 14]. None of previous work shows how it interacts with existing process place-
ment approaches which are based on point-to-point communications and may also result
in sub-optimal mappings.

Our work, to the best of our knowledge, is the first one to obtain optimized pro-
cess mapping for applications with both collective communications and point-to-point
communications.

3 The Framework of Process Placement

In this section, we illustrate the framework of process placement. In general, the process
placement algorithm takes parameters from target systems and parallel applications, and
outputs the process placement scheme, as illustrated in Figure 1.

Target Platform

(Cluster, Grid)

Network Topology 

Analysis Tool

Network Topology 

Graph 

(NTG)

Map CTG to 

NTG

New Placement

Scheme

Target

Applications

SIM-MPI Lib
Comm. 

Topology 

Graph (CTG)

Comm. 

Topology 

for P2P

Comm. 

Topology 

for Coll.

Decomposing

Knowledge 

Base

P2P Comm 

Profile

Coll. 

Comm

Profile

Fig. 1. The framework of our process placement method

Target systems are modeled with network topology graphs (NTGs) describing band-
width and latency between processors (cores), which are obtained with a network topol-
ogy analysis tool automatically. The tool is implemented with a parallel ping-pong test
benchmark which is similar to the one used in MPIPP [3]. Two M × M matrices
are used to represent network topology graphs, where M is the number of processor
cores in the target system: (1) NTGbw describes the communication bandwidth and (2)
NTGlatency describes the communication latency between each pair of two processor
cores. We adopt the method used in MVAPICH [15] to measure and calculate latency
and bandwidth between two processor cores.

Parallel applications are characterized with communication topology graphs (CTGs)
which include both message count and message volume between any pair of MPI



84 J. Zhang et al.

ranks. We process point-to-point communications and collective communications sep-
arately. For point-to-point communications, we use two matrices, CTGp2p count and
CTGp2p volume, to represent the number or aggregated volume of point-to-point com-
munications between rank i and j in a parallel application respectively (Please refer to
[3] for details). For collective operations, we propose a method to translate all collective
communications into point-to-point communications, which will be described in detail
in Section 4. Now assuming we have translated all collective communications into a
series of point-to-point communications, we can generate the following two matrices
CTGcoll count and CTGcoll volume in which element (i, j) represents the number or
volume of translated point-to-point communications from collective communications
between rank i and j respectively. Then the communication topology of the whole ap-
plication can be represented by two matrices which demonstrate message count and
message volume for both collective and point-to-point communications:

CTGapp count = CTGcoll count + CTGp2p count

CTGapp volume = CTGcoll volume + CTGp2p volume

We feed the network topology graphs and communication topology graphs to a graph
partitioning algorithm to get the optimized process placement. In our implementation,
we use the heuristic k-way graph partitioning algorithm proposed in [3] which gives a
detailed description for its implementation and performance.

4 Communication Topology Graphs of Collective Communications

In this section, we introduce our approach to decompose collective communications
into point-to-point communications. We first use MPI Alltoall as a case study, then
we show the construction of Decomposition Knowledge Base (DKB) which can be em-
ployed to transform every MPI collective communications into point-to-point
communications.

4.1 A Case Study: MPI Alltoall

One implementation of MPI Alltoall is the Bruck Algorithm [16], as shown in
Figure 2. At the beginning, rank i rotates its data up by i blocks. In each communi-
cation step k, process i sends to rank(i + 2k) all those data blocks whose kth bit is 1,
receives data from rank(i− 2k). After a total of �log P � steps, all the data get routed to
the right destination process. A final step is that each process does a local inverse shift
to place the data in the right order.

For an MPI Alltoall instance on 8 MPI ranks, we can decompose it in three steps
as illustrated in Figure 2. Assuming the message size of each item is 10 byte, then step 0
can be decomposed into 8 point-to-point communications whose message sizes are all
40 bytes. The second and third steps can also be decomposed into 8 point-to-point
communications of 40 bytes respectively. Finally, we decompose the MPI Alltoall
into 24 different point-to-point communications. We aggregate the volume and number
of messages between each pair of the MPI ranks and get the communication graphs
(CTGcoll count and CTGcoll volume), which are first introduced in Section 3. Figure 3
shows the CTGcoll volume for this MPI Alltoall instance.



Process Mapping for MPI Collective Communications 85

00

01

10 20 30 40 50

p0 p1 p2 p3 p4 p5

Initial Data

04

05

02

03

11

14

15

12

13

21

24

25

22

23

31

34

35

32

33

41

44

45

42

43

51

54

55

52

53

00

01

11 22 33 44 55

04

05

02

03

12

15

16

13

14

23

26

27

24

25

34

37

30

35

36

45

40

41

46

47

56

51

52

57

50

66 77

67

62

63

60

61

70

73

74

71

72

60 70

61

64

65

62

63

71

74

75

72

73

p6 p7 p0 p1 p2 p3 p4 p5 p6 p7 p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

00

10

01 02 03 04 05

p0 p1 p2 p3 p4 p5

40

50

20

30

11

41

51

21

31

12

42

52

22

32

13

43

53

23

33

14

44

54

24

34

15

45

55

25

35

06 07

16

46

56

26

36

17

47

57

27

37

p6 p7

06

07

16

17

26

27

36

37

46

47

56

57

66

67

76

77

After local rotation

06

07

17

10

20

21

31

32

42

43

53

54

64

65

75

76

After communication step 0

After communication step 1 After communication step 2 After local inverse rotation

60

70

61

71

62

72

63

73

64

74

65

75

66

76

67

77

00

70

11 22 33 44 55

04

74

02

72

01

15

05

13

03

12

26

16

24

14

23

37

27

35

25

34

40

30

46

36

45

51

41

57

47

66 77

56

62

52

60

50

67

73

63

71

61

06

76

17

07

20

10

31

21

42

32

53

43

64

54

75

65

00

70

11 22 33 44 55

04

74

60

50

01

15

05

71

61

12

26

16

02

72

23

37

27

13

03

34

40

30

24

14

45

51

41

35

25

66 77

56

62

52

46

36

67

73

63

57

47

64

54

75

65

06

76

17

07

20

10

31

21

42

32

53

43

p0 p1 p2 p3 p4 p5 p6 p7

00

70

11 22 33 44 55

40

30

60

50

01

51

41

71

61

12

62

52

02

72

23

73

63

13

03

34

04

74

24

14

45

15

05

35

25

66 77

56

26

16

46

36

67

37

27

57

47

20

10

31

21

42

32

53

43

64

54

75

65

06

76

17

07

Fig. 2. Bruck Algorithm for MPI Alltoall with 8 MPI ranks. The number (ij) in each box
represents the data to be sent from rank i to rank j. The shaded boxes indicates the data to be
communicated in the next step.

40

40

0

80

0

40

40

0

40

0

80

0

40

40

0

40

0

80

0

40

40

0

40

40

80

0

40

40

0

40

40

0

0

40

40

0

40

40

0

80

40

40

0

40

40

0

80

0

40

0

40

40

0

80

0

40

0

40

40

0

80

0

40

40

P7

P6

P5

P4

P3

P2

P1

P0

P0 P1 P2 P3 P4 P5 P6 P7

Fig. 3. Decomposition results for Bruck Algorithm of MPI Alltoall with 8 MPI ranks. The
value of the block (i, j) represents the communication volume between the process i and the
process j during the process of collective communications.

4.2 Decomposition Knowledge Base

The previous section shows how we can decompose MPI Alltoall to point-to-point
communications and generate its communication graphs. The same approach can be
applied to other MPI collection communications too.

One of the challenge to decompose MPI collective communications is that they are
implemented in different ways for different MPI libraries. What’s more, even in the
same MPI library, the algorithms used to implement a certain collective communication
may depend on the size of messages and the number of processes.

To correctly identify implementation algorithms for each collective communication,
we build a Decomposing Knowledge Base (DKB) which records the rules to map collec-
tive communications to its implementation algorithms. Through analyzing the MPICH-
1.2.7 [18] code and MVAPICH-0.9.2 [15] code manually, we get the underlying



86 J. Zhang et al.

g p
Name MPICH-1.2.7 MVAPICH-0.9.2
Barrier Recursive Doubling Recursive Doubling
Bcast Binomial Tree (SIZE<12288bytes or NP<8) Binomial Tree (SIZE<12288bytes and NP≤8)

Van De Geijn (SIZE<524288bytes, power-of-two MPI processes and NP≥8) Van De Geijn (the other conditions)
Ring (the other conditions)

Allgather Recursive Doubling (SIZE*NP<524288bytes and power-of-two MPI processes) Recursive Doubling
Bruck (SIZE*NP<81920bytes and non-power-of-two MPI processes)
Ring (the other conditions)

Allgatherv Recursive Doubling (SIZE*NP<524288bytes and power-of-two MPI processes) Recursive Doubling (TOTAL SIZE≤262144bytes)
Bruck (SIZE*NP<81920bytes and non-power-of-two MPI processes) Ring(the other conditions)
Ring (the other conditions)

Gather Minimum Spanning Tree Minimum Spanning Tree
Reduce Rabenseifner (SIZE>2048bytes and OP is permanent.) Recursive Doubling

Binomial Tree (the other conditions)
Allreduce Recursive Doubling (SIZE≤2048bytes or OP is not permanent.) Recursive Doubling

Rabenseifner (the other conditions)
Alltoall Bruck (SIZE≤256bytes and NP≥8) Recursive Doubling (SIZE≤128bytes)

Isend Irecv (256bytes≤SIZE≤32768bytes) Isend Irecv (128bytes<SIZE<262144)
Pairwise Exchange (the other conditions) Pairwise Exchange (the other conditions)

Scatter Minimum Spanning Tree Minimum Spanning Tree
Scatterv Linear Linear
Gatherv Linear Linear
Alltoallv Isend Irecv Isend Irecv

Fig. 4. Classify algorithms used in MPICH and MVAPICH. SIZE represents the communica-
tion size. NP represents the number of MPI processes. OP represents the operation used in
MPI Allreduce or MPI Reduce and TOTAL SIZE used for MPI Allgatherv represents the sum
of sizes received from all the other processes (Van de Geijn and Rabenseifner’s algorithms are
proposed in [13] and [17] respectively.).

collective communication algorithms listed in Figure 4. This table presents collective
communication algorithms used in different collective communications. The DKB we
built is a essentially similar table which can output the decomposition algorithms used
by a specified MPI collective communication depending on the interconnect, the MPI
implementation, message sizes and the number of processes. Our current DKB covers
MPICH-1.2.7 and MVAPICH-0.9.2 for both Ethernet and Infiniband networks.

With the help of DKB, we can generate the communication topology graph of any
collective communications, as shown in Figure 5. We input a collective communi-
cation to DKB, which include the type of the collective communication, Root ID,
Send Buf Size and Communicator ID. DKB outputs the algorithm used in this

CPU#

C
P

U
#

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Bruck Decomposing
Binomial Decomposing
Ring Decomposing
Linear Decomposing

Decomposing Algorithms

Name: MPI_Alltoall
MPIVersion: MPICH-1.2.7
Send_Size: 10
Recv_Size: 10
Comm ID: MPI_COMM_WORLD
NumProcess: 8

Parser Input

MPI_Alltoall (Sendbuf, 
10,MPI_CHAR,Recvbuf,1

0, MPI_CHAR, Comm)

INPUT : Collective 
Communication

OUTPUT : Collective 
Communication Graph

Decomposing Knowledge Base

Bruck

Fig. 5. Usage of decomposing knowledge base



Process Mapping for MPI Collective Communications 87

collective communication. We then decompose the collective communication into a
series of point-to-point communications based on its implementation. These point-
to-point communications can then be used to generate the communication topology
graph of this collective communication. We process the collective communications
one by one, and aggregate their communication topology graphs to obtain the com-
munication topology graphs for all the collective communications (CTGcoll count and
CTGcoll volume defined in Section 3) of the whole application. Then we can perform
process mapping according to steps described in Section 3.

5 Experiment Platforms and Benchmarks

5.1 Experiment Platforms

We perform experiments on a 16-node cluster in which each node is a 2-way server
with 4GB memory. The processors in this cluster are 1.6GHz Intel Xeon dual core
processors with 4MB L2 cache. Linux 2.6.9 and MPICH-1.2.7 [18] are installed on
each node. These nodes are connected by a 1Gbps Ethernet. Since there are 64 cores in
the cluster, we execute up to 64-rank MPI applications and all applications are compiled
with Intel compiler 9.0.

The cluster exhibits non-uniform communication cost between cores. We use our
network analysis tool to get the network topology graphs for our experimental network
platform. Figure 6 and Figure 7 show the latency and bandwidth between each pair
of cores in this cluster. We see that communication inside a node is much faster than
communication between nodes.

5.2 Benchmarks and Applications

We use the following benchmarks and applications to verify the effect of our optimized
process placement scheme.

1. Intel MPI Benchmark (IMB) [19]
IMB is a micro-benchmark developed by Intel. We use it to verify that we can find
optimized process placement for each MPI collective communication.

0
20

40
60

80

0

20

40

60

80
10

20

30

40

50

60

70

80

CPU#CPU#

La
te

nc
y(

us
)

Fig. 6. Latency between cores

0
20

40
60

80

0

20

40

60

80
0

50

100

150

200

250

300

350

CPU#CPU#

B
an

dw
id

th
(M

B
)

Fig. 7. Bandwidth between cores



88 J. Zhang et al.

2. NAS Parallel Benchmark (NPB) [4]
The NAS Parallel Benchmarks (NPB) are a set of scientific computation programs.
In this paper, we use NPB 3.2 and Class C data set.

3. Three other applications

– ASP [9]
A parallel application which solves the all-pairs-shortest-path problem with the
Floyd-Warshall algorithm. It has been integrated into Magpie [9].

– GE [20]
A message passing implementation of the Gauss Elimination. It is an efficient
algorithm for solving systems of linear equations.

– PAPSM [21]
This is a parallel application which implements the realtime dynamic simula-
tion of power systems. The application is implemented by a hierarchical Block
Bordered Diagonal Form (BBDF) algorithm for power network computation.

6 Experiment Results and Analysis

In this section, we compare our process mapping approach OPP with two widely used
process placement scheme in MPI, block and cyclic [22], as well as the most
up-to-date optimized process mapping approach, MPIPP [3]. Each result is the
average of five executions and normalized by the result of block scheme.

6.1 Micro Benchmarks

We use IMB2 to evaluate how OPP outperforms block and cyclic for each individual
collective communications. The result of MPIPP is not presented because MPIPP does
not deal with collective communications at all.

Figures 8–15 exhibit the results of OPP, block and cyclic process placement for
different collective communications on 64 MPI ranks. The results show:

– There are a few collective communications such as Reduce, Allreduce, on which
the block scheme always outperforms the cyclic scheme, while there are a few oth-
ers such as Gather and Scatter, on which the cyclic scheme always outperforms
the block scheme.

– For some collective communications, such as Bcast and Allgather, neither the
block nor cyclic scheme can always outperform the other because their relative
performance depends on the size of messages.

– Our proposed approach, OPP, can always find the best placement scheme com-
paring to the block and cyclic for all collective communications on all message
sizes.

2 IMB does not provide the test for MPI Gather and MPI Scatter. We design a micro-
benchmark to test them.



Process Mapping for MPI Collective Communications 89

Fig. 8. Bcast (NP=64) Fig. 9. Gather (NP=64) Fig. 10. AllGather (NP=64)

Fig. 11. Reduce (NP=64) Fig. 12. Allreduce (NP=64) Fig. 13. Scatter (NP=64)

Fig. 14. Alltoall (NP=64) Fig. 15. Barrier (NP=64) Fig. 16. Allreduce (NP=33)

Non-Power-of-Two MPI Ranks. We take a further investigation on process place-
ment for non-power-of-two MPI ranks. Some collective communication algorithms
favor more on the situation of the power-of-two MPI ranks because they are sym-
metric in design, so their performance may degrade when the number of ranks is not
power-of-two.

We show how OPP can improve performance in these situations. Due to space lim-
itation , we only take MPI Allreduce as an example. Figure 16 exhibits the result of
MPI Allreduce with 33 MPI ranks.

Figure 16 shows that OPP performs significantly better than the block and cyclic
placement schemes for all tested message size. OPP is 20.4% better than the block
placement and 53.6% better than the cyclic placement on average.

The result indicates that OPP has more benefits for applications with collective
communications which require running with non-power-of-two MPI ranks.



90 J. Zhang et al.

6.2 NPB and Other Applications

In this section, we perform experiments with NPB and three parallel applications, ASP,
GE and PAPSM as described in Section 5.2. The results are obtained with 64 MPI ranks
except for PAPSM which only supports up to 20 MPI ranks. The results are shown
in Table 1. For applications which only contain collective communications, such as
ft, PAPSM and ASP, performance of MPIPP is not applicable since it can only find
optimized placement for point-to-point communications.

By examining the results in Table 1, we can see that:

– For applications dominated by point-to-point communications, such as bt, cg, sp
and mg, both MPIPP and OPP can get better performance than block and cyclic
schemes. MPI and OPP are equally good for this category of applications.

– For applications that only contain collective communications, such as ft, PAPSM
and ASP, MPIPP can not get optimized rank placement because it does not deal
with collective communications. So we can only compare OPP with block and
cyclic schemes. We see that OPP shows its capability to find optimized MPI rank
placement scheme for this class of applications which can get up to 26% perfor-
mance gain over the best of block or cyclic schemes.

– IS and GE are applications that have both point-to-point and collective communi-
cations, but are dominated by collective communications. MPIPP decides the MPI
rank placement based on the point-to-point communication patterns and get subop-
timal placement schemes. MPIPP is 6.0% and 5.1% worse than the best of block or
cyclic scheme for IS and GE respectively. On the contrary, OPP can find optimized
layout for both point-to-point and collective communications, which is 0.1% and
19% better in these two applications.

In summary, OPP shows that it can find optimized MPI process placement for all
three classes of parallel applications.

Table 1. The execution time (in seconds) of NPB suite and three parallel programs with different
placement schemes

Name Block(s) Cyclic(s) MPIPP(s) OPP(s) Speedup of OPP vs. Block
bt.C.64 95.47 103.76 90.79 90.66 1.05
cg.C.64 64.14 89.03 62.3 62.3 1.03
ep.C.64 11.12 11.12 11.12 11.09 1.00
lu.C.64 69.32 74.39 68.72 68.72 1.01
sp.C.64 143.97 151.40 132.12 132.12 1.09
mg.C.64 9.56 9.12 9.11 9.10 1.06
is.C.64 12.59 12.14 12.87 12.13 1.04
ft.C.64 31.52 23.20 N.A. 22.89 1.38

PAPSM.20 15.78 19.45 N.A. 12.54 1.26
GE.64 20.83 25.14 21.89 17.48 1.19
ASP.64 55.93 50.46 N.A. 50.16 1.11



Process Mapping for MPI Collective Communications 91

7 Discussion

An interesting issue is the interaction between MPI process placement and optimized
collective communication implementation. In our current scheme, we first fix the collec-
tive communication implementation according to the MPI library, then perform process
placement optimization based on this implementation. This is a reasonable choice if we
wish our MPI process placement approach to be compatible with existing MPI libraries.

An alternative approach to deal with this problem is to fix the process placement
based on the point-to-point communication pattern of a parallel application first, then
determine the optimized collective communication implementation for the given pro-
cess placement scheme. This approach has the potential of achieving better perfor-
mance, but loses the compatibility because it only works with MPI libraries which are
process placement aware. Nevertheless, we believe this is a promising way to go.

8 Conclusions

In this paper, we argue that it is an important problem to map virtual parallel processes
to physical processors (or cores) in an optimized way to get scalable performance due
to non-uniform communication cost in modern parallel computers. Existing work either
determines optimized process mapping based on point-to-point communication patterns
or optimizes collective communications only without awareness of point-to-point com-
munication patterns in parallel applications. Thus they may all fall into sub-optimal
placement results.

To solve the problem, we propose a method which first decomposes a given col-
lective communication into a series of point-to-point communications based on its im-
plementation in the MPI library that are used in the target machine. Then we generate
the communication patterns of the whole application by aggregating all collective and
point-to-point communications in it. We then use a graph partition algorithm to find
optimized process mapping schemes.

We perform extensive experiments on each single MPI collective communications and
11 parallel applications with different communication characteristics. Results show that
our method (OPP) can get best results in all cases, and perform significantly better than
previous work for applications with both point-to-point and collective communications.

References

[1] Colwell, R.R.: From terabytes to insights. Commun. ACM 46(7), 25–27 (2003)
[2] Pant, A., Jafri, H.: Communicating efficiently on cluster based grids with MPICH-VMI. In:

CLUSTER, pp. 23–33 (2004)
[3] Chen, H., Chen, W., Huang, J., Robert, B., Kuhn, H.: MPIPP: an automatic profile-guided

parallel process placement toolset for SMP clusters and multiclusters. In: ICS, pp. 353–360
(2006)

[4] NASA Ames Research Center. NAS parallel benchmark NPB,
http://www.nas.nasa.gov/Resources/Software/npb.html

[5] Phinjaroenphan, P., Bevinakoppa, S., Zeephongsekul, P.: A heuristic algorithm for mapping
parallel applications on computational grids. In: EGC, pp. 1086–1096 (2005)

http://www.nas.nasa.gov/Resources/Software/npb.html


92 J. Zhang et al.

[6] Sanyal, S., Jain, A., Das, S.K., Biswas, R.: A hierarchical and distributed approach for
mapping large applications to heterogeneous grids using genetic algorithms. In: CLUSTER,
pp. 496–499 (2003)

[7] Bhanot, G., Gara, A., Heidelberger, P., Lawless, E., Sexton, J., Walkup, R.: Optimizing
task layout on the Blue Gene/L supercomputer. IBM Journal of Research and Develop-
ment 49(2-3), 489–500 (2005)

[8] Yu, H., Chung, I., Moreira, J.: Topology mapping for Blue Gene/L supercomputer. In: SC,
pp. 52–64 (2006)

[9] Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.: MagPIe: MPI’s collec-
tive communication operations for clustered wide area systems. In: PPOPP (1999)

[10] Sanders, P., Traff, J.L.: The hierarchical factor algorithm for all-to-all communication
(research note). In: Monien, B., Feldmann, R.L. (eds.) Euro-Par 2002. LNCS, vol. 2400,
pp. 799–804. Springer, Heidelberg (2002)

[11] Sistare, S., vande Vaart, R., Loh, E.: Optimization of MPI collectives on clusters of large-
scale SMP’s. In: SC, pp. 23–36 (1999)

[12] Tipparaju, V., Nieplocha, J., Panda, D.K.: Fast collective operations using shared and re-
mote memory access protocols on clusters. In: IPDPS, pp. 84–93 (2003)

[13] Barnett, M., Gupta, S., Payne, D.G., Shuler, L., van de Geijn, R., Watts, J.: Interprocessor
collective communication library (InterCom). In: SHPCC, pp. 357–364 (1994)

[14] Kalé, L.V., Kumar, S., Varadarajan, K.: A framework for collective personalized commu-
nication. In: IPDPS, pp. 69–77 (2003)

[15] Ohio State University. MVAPICH: MPI over infiniband and iWARP,
http://mvapich.cse.ohio-state.edu

[16] Bruck, J., Ho, C., Upfal, E., Kipnis, S., Weathersby, D.: Efficient algorithms for all-to-all
communications in multiport message-passing systems. IEEE Trans. Parallel Distrib. 8(11),
1143–1156 (1997)

[17] Rabenseifner, R.: New optimized MPI reduce algorithm, http://www.hlrs.de/
organization/par/services/models/mpi/myreduce.html

[18] Argonne National Laboratory. MPICH1,
http://www-unix.mcs.anl.gov/mpi/mpich1

[19] Intel Ltd. Intel IMB benchmark, http://www.intel.com/cd/software/
products/asmo-na/eng/219848.htm

[20] Huang, Z., Purvis, M.K., Werstein, P.: Performance evaluation of view-oriented parallel
programming. In: ICPP, pp. 251–258 (2005)

[21] Xue, W., Shu, J., Wu, Y., Zheng, W.: Parallel algorithm and implementation for realtime
dynamic simulation of power system. In: ICPP, pp. 137–144 (2005)

[22] Hewlett-Packard Development Company. HP-MPI user’s guide,
http://docs.hp.com/en/B6060-96024/ch03s12.html

http://mvapich.cse.ohio-state.edu
http://www.hlrs.de/organization/par/services/models/mpi/myreduce.html
http://www.hlrs.de/organization/par/services/models/mpi/myreduce.html
http://www-unix.mcs.anl.gov/mpi/mpich1
http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
http://docs.hp.com/en/B6060-96024/ch03s12.html

	Process Mapping for MPI Collective Communications
	Introduction
	Related Works
	The Framework of Process Placement
	Communication Topology Graphs of Collective Communications
	A Case Study: MPI_Alltoall
	Decomposition Knowledge Base

	Experiment Platforms and Benchmarks
	Experiment Platforms
	Benchmarks and Applications

	Experiment Results and Analysis
	Micro Benchmarks
	NPB and Other Applications

	Discussion
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




