
Parallelization and Characterization of Probabilistic Latent Semantic Analysis

Chuntao Hong, Wenguang Chen, Weimin Zheng
Tsinghua University, China, 100084

hct05@mails.thu.edu.cn, cwg@thu.edu.cn, zwm-tse@thu.edu.cn

Jiulong Shan∗, Yurong Chen, Yimin Zhang
Intel China Research Center

{jiulong.Shan, yurong.chen, yimin.zhang}@intel.com

Abstract

Probabilistic Latent Semantic Analysis (PLSA) is one
of the most popular statistical techniques for the anal-
ysis of two-model and co-occurrence data. It has ap-
plications in information retrieval and filtering, nature
language processing, machine learning from text, and
other related areas. However, PLSA is rarely applied to
large datasets due to its high computational complexity.

This paper presents an optimized and parallelized
implementation of PLSA which is capable of processing
datasets with 10000 documents in seconds. Compared
to the baseline program, our parallelized program can
achieve speedup of more than six on an eight-processor
machine. The characterization of the parallel program
is also presented. The performance analysis of the par-
allel program indicates that this program is memory in-
tensive and the limited memory bandwidth is the bottle-
neck for better speedup.

Keywords: parallelization, characterization, PLSA,
tempered EM, multi-core

1. Introduction

Learning from text and natural language is an im-
portant part of machine learning, which has been draw-
ing more and more attention in the computer science
community. However, learning from text and nature
language still remains one of the most challenging fields
in computer science. The main challenge such a ma-
chine learning system has to deal with when learning
roots in the problem of polysemys and synonymys, i.e.,
a word having several meanings and several words hav-
ing the same meaning.

∗Jiulong is now working in Google China.

Latent Semantic Analysis (LSA)[2] is a well-
known technique developed to solve the problem of
polysemys and synonymys. Traditionally, documents
are viewed as vectors of words, which then make up
a large document-word co-occurrence table. LSA, on
the other hand, tries to map the vectors into a lower-
dimension space, called latent semantic space. By do-
ing this, LSA avoids the problem of polysemys and syn-
onymys. Due to its generality, LSA has been applied to
a wide range of fields.[2][6][7][8] Despite this, the the-
oretical foundation of LSA remains unsatisfactory and
incomplete.[1]

Probabilistic Latent Semantic Analysis (PLSA)[1]
is proposed as an alternative of LSA. In contrast to LSA,
which performs Singular Value Decomposition (SVD)
on the co-occurrence tables, PLSA is based on mixture
decomposition derived from a latent class model, which
results in a more principle approach that has a solid sta-
tistical foundation. However, PLSA is rarely applied to
large datasets because of its high computational com-
plexity.

This paper presents an optimized and parallelized
implementation of PLSA, which is able to achieve
speedup of more than six on an eight-processor shared-
memory machine. The baseline program is an opti-
mized Tempered Expectation-Maximization (TEM) im-
plementation of PLSA, which is stemmed from the im-
plementation included in Lemur[5]. The original im-
plementation in Lemur is not well optimized, but we
performed several common optimizing techniques, such
as loop interchange and unrolling, to the program, and
made it possible to run the program on datasets with
more than 10000 documents.

Considering the multi-core trend in future CPUs,
we implemented our parallel program using the
OpenMP[3] programming model, which is the most
widely used programming model for shared-memory

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.8

628

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

machines. During the parallelization, we found that our
datasets are sparse matrices whose nonzero elements
are not evenly distributed, which incurred load imbal-
ance among the processors. We propose a block di-
viding algorithm and a block scheduling algorithm to
achieve better load balance. According to our experi-
ments, the two algorithms are both effective and of low
cost.

Experiments were also carried out to identify the
characteristics of the program. The performance anal-
ysis of the parallel implementation indicates that this
program is memory intensive and the limited memory
bandwidth is the bottleneck for better speedup.

The main contributions of this paper include:

1. An efficient parallel TEM implementation of
PLSA based on the implementation provided in
Lemur[5], which uses the same memory size, but
is much faster than Lemur implementation, and
scales well on our multi-core machines.

2. An adaptive block dividing algorithm and a block
scheduling algorithm to achieve load balance for
the parallel implementation of PLSA, which prove
to be both effective and of low cost.

3. Analysis on the parallel implementation which in-
dicates that the limited memory bandwidth has be-
come the bottleneck of this kind of memory inten-
sive program.

The remaining sections of this article are organized
as follows. Section 2 gives brief introduction to PLSA
and the tempered EM algorithm. Section 3 demon-
strates how we optimize the Lemur code to get our base-
line program. Section 4, then, presents the paralleliza-
tion of the program, in which we propose a data divid-
ing and a job scheduling algorithm. Section 5 exhibits
the experimental results, and gives the analysis, which
leads to the conclusions part.

2. Probabilistic Latent Semantic Analysis
and Tempered EM Algorithm

Suppose we have a collection of documents D =
{d1,d2, ...,dN} with words from a vocabulary W =
{w1,w2, ...,wM}. By ignoring the sequence order in
which words occur in a document, one can summarize
the data in a N ∗M document-word co-occurrence ta-
ble A, where the element Ai j indicates the number of
times a term wj occurs in document di. This representa-
tion of document collections is called the vector-space
representation. It is widely used by many algorithms
such as text retrieval based on keywords. However, this

representation suffers from the issue of polysemys and
synonymys.

To address this problem, PLSA introduces the la-
tent semantic variables Z = {z1,z2, ...zK}. Figure 1
shows the statistical model PLSA is based on. The
model, which is called aspect model, has two forms,
namely the symmetric and asymmetric forms. We use
the symmetric form in our paper, as [1] did.

Figure 1. Graphical model representation of
the aspect model in symmetric form. d indi-
cates a document, w is a word, and z is a latent
semantic variable.

Given this aspect model, the joint probability
model over DxW is defined as:

P(d,w) = ∑
z∈Z

P(z)P(w|z)P(d|z) (1)

In this way, the relationship between two docu-
ments can be expressed by P(d|z) and P(z), instead of
the original P(d,w), thus the issue of polysemys and
synonymys can be solved. The output of the PLSA al-
gorithm is the best estimation of the parameters P(d|z),
P(w|z), and P(z). Following the likelihood principle,
one determines the best estimation by maximization of
the log-likelihood function:

L = ∑
d∈D

∑
w∈W

n(d,w) logP(d,w), (2)

This algorithm can be implemented using the
Expectation-Maximization (EM) algorithm[10]. First
part of the text dataset is held out as test data to eval-
uate the quality of the estimation. Then EM iterations
are performed on the rest of the dataset. The log like-
lihood L computed using an estimation on the held-out
data increases after each EM iteration, until it reaches
a maximum point, which is defined as the convergence
point.

An EM iteration can be divided into two steps,
namely (i) the expectation step (E-step), where poste-
rior probabilities P(z|d,w) are computed for the latent
variables z, based on the current estimates of the pa-
rameters, and (ii) the maximization step (M-step), in

629

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

which parameters P(d|z), P(w|z), and P(z) are updated
for given posterior probabilities computed in the previ-
ous E-step.

In other words, the E-step calculates the probability
of

P(z|d,w) =
P(z)[P(d|z)P(w|z)]

∑z′ P(z′)[P(d|z′)P(w|z′)]
, (3)

where P(z|d,w) is the posterior probability of latent
variable z, given the occurrence of a term w in the docu-
ment d, and the parameters P(d|z), P(w|z), and P(z) are
the results of the last EM iteration.

And the M-step updates the parameters by the fol-
lowing equations:

P(w|z) =
∑d n(d,w)P(z|d,w)

∑d,w′ n(d,w′)P(z|d,w′)
(4)

P(d|z) =
∑w n(d,w)P(z|d,w)

∑d′,w n(d′,w)P(z|d′,w)
(5)

P(z) =
∑d,w n(d,w)P(z|d,w)

R
,R = ∑

d,w

n(d,w) (6)

Tempered EM (TEM) is almost the same as stan-
dard EM, but it uses a power β , which should be less
or equal to 1, to avoid overfitting. And it calculates
P(z|d,w) as

Pβ (z|d,w) =
P(Z)[P(d|z)P(w|z)]β

∑z′ P(z′)[P(d|z′)P(w|z′)]β
(7)

The TEM algorithm can be described as follows:[1]

1. Set β = 1 and perform EM until the log likelihood
of the test data deteriorates

2. Decrease β by setting β = ηβ , where η is a pa-
rameter less than 1

3. As long as the log likelihood on test data improves,
continue TEM iterations at this value of β

4. Stop on β if decreasing β does not yield further
improvements, otherwise goto step 2

The PLSA algorithm basically starts from random-
ized Pz, P(d|z) and P(w|z), and performs TEM itera-
tions until convergence.

3. The Baseline Program

We start from a simple reference implementation
which is provided in the cluster package of Lemur
4.2[5]. In this implementation, the parameters P(d|z),
and P(w|z), and P(z) are stored in matrices and the com-
mon parts ∑d,w n(d,w)P(z|d,w) in equations 4, 5, 6 are

stored in an array of size Z named denominator, while
the posterior probabilities P(z|d,w) are calculated when
needed.

So the implementation has space complexity of

Cs = O(D∗Z +W ∗Z + Z) = O(D∗Z +W ∗Z),

and time complexity for each Tempered EM (TEM) it-
eration of

Ct = O(W ∗D∗Z2 + N ∗Z2) = O(W ∗D∗Z2).1

For convenience, we use D, W and Z to denote the num-
ber of documents, words, and latent semantic variables.
Due to the space limit of the paper, we have to leave out
the deduction of the complexity.

As can be seen, the Lemur implementation is ineffi-
cient, mainly due to the in-need calculating of P(z|d,w).
By reorganizing the order of the operations, we man-
aged to reduce the time complexity, while keeping the
space complexity unchanged. The time complexity of a
TEM iteration in the optimized program is:

C′t = O(N ∗Z).

This is actually the number of P(z|d,w) needed to be
calculated in each iteration. So we are not doing any
unnecessary calculations.

Apart from the reduction of computational com-
plexity, we also applied other common optimization
techniques to the program, such as loop interchange,
and loop unrolling. As we are running the program on
x86 machines, we also take advantage of SSE instruc-
tions to accelerate the program.

Dataset cranmed la12 new3
Lemur 136 915 2257
Baseline 0.195 0.537 1.54

Table 1. Time spent in an TEM iteration on
HPC134 in seconds.

A comparison of the Lemur implementation and
the baseline program is presented in Table 1. Exper-
iments were carried out on HPC134 (refer to Table 3
for details). We used three different datasets, with dif-
ferent number of documents and words. As expected,
our baseline program is orders of magnitude faster than
Lemur, mainly due to reduced complexity.

1N is usually orders of magnitude smaller than W*D.

630

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

4. Parallelization of the Algorithm

4.1. Data Race and the Block-dispatching Al-
gorithm

� � �
� � � � � � � � � �

	
 � � �

�

�

�

�

�

� � � � � � � � � �
� � � � � � � � � � � � 	

� � � � � � � � � � � � �

� � � � � � � � � �

�

Figure 2. A demonstration of how the ma-
trices are accessed when calculating the val-
ues of P(z|d,w) for a specific (d,w) pair. A
value n(d,w) from the co-occurrence table, and
a row in the previous matrices p d z prev and
p w z prev are read in to produce these values
of P(z|d,w). These values are then accumulated
to the corresponding row in p d z current and
p w z current. The p d z matrices are rotated in
the figure for the convenience of drawing. They
are actually stored as D rows and Z columns.

Figure 2 demonstrates how the matrices are ac-
cessed in our program. We introduce several new sym-
bols in this figure. The matrices p d z and p w z store
the values of P(d|z) and P(w|z), and the co-occurrence
table is named n(d,w). p d z prev and p w z prev
store the values produced in the previous TEM iteration,
while p d z current and p w z current store the current
ones. The program basically reads a value in n(d,w),
and a row in p d z prev and p w z current, uses them
to calculate the corresponding P(z|d,w), then adds the
values to p d z current and p w z current. If two pro-
cessors get two elements of the co-occurrence table in
the same row or column, they may write into the same
row of p d z current or p w z current at the same time,
thus causing data race.

To avoid data race, we divided the co-occurrence
table into n columns and n rows, and dispatch the blocks
to the processors using an algorithm that makes sure no
blocks in the same column or row would be processed at
the same time. A straightforward approach is to search
through all blocks for an available block every time.
But this simple approach is too costly in multiprocess-

ing environments. Searching through all blocks is an
operation that should be put in a critical section. Con-
sidering the complexity of this operation, putting it in
a critical section would incur great lock overhead, and
thus should be avoided.

Instead of this straightforward algorithm, we im-
plemented an algorithm named TwoForward (TF)
which is described below:

1. at the begining of the algorithm, put all the blocks
in the diagonal into a queue Q

2. when a processor P is free, it tests if Q is empty,
if not, it pops a block Bi, j from Q, otherwise the
algorithm stops

3. P push the block B(i−1) mod n, j and Bi,(j+1) mod n
into Q if this won’t raise a conflict

4. P process the block

5. goto 2

This algorithm is lightweight, hence suitable for
multi processing environment. Although it cannot ex-
ploit all possible chances of parallel processing, it
would be sufficiently good if the blocks are well di-
vided. According to our experiments, TF works well
with our blocking algorithm described below, and
achieves good load balance at relatively low cost.

4.2. Load Balance and the Blocking Strategy

The co-occurrence tables of our datasets are sparse
matrices, meaning that two columns may have differ-
ent number of nonzero elements. Moreover, two of the
datasets we use, new3 and cranmed as described in the
experimental section, are sorted such that most of the
nonzero elements are placed on the upper-right corner
of the matrix. If we divide the blocks so that they have
the same number of rows and columns, the number of
nonzero elements they have will differ greatly. For the
new3 and cranmed datasets, the amount may even differ
by orders of magnitude.

In order to address this issue, we developed an
adaptive blocking strategy called FairDividing (FD).
Assuming that the dataset should be divided into K ∗K
blocks, and Bi, j is an arbitrary resulting block whose el-
ements ranges from Aab to Acd where c≥ a and d ≥ b,
the FD algorithm divides the blocks so that:

sumc
i=aRi ≈ N/K,

and sumd
j=bCj ≈ N/K,

where Ri is the number of nonzero elements in row i of
the co-occurrence table, ,Cj is the number of nonzero

631

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

elements in column j, and N is the total number of
nonzero elements.

This heuristic algorithm tend to produce smaller
blocks where the nonzero elements are densely dis-
tributed, while produce larger blocks where the nonzero
elements are scarce. Though the algorithm does not
guarantee that all the blocks contain the same number
of nonzero elements, it is good enough to balance the
workloads of the processors, as proved by our experi-
ments.

The number of blocks a co-occurrence table is di-
vided can also affect the performance of the program.
Dividing the table into too few blocks would make the
load balancing between processors hard, while divid-
ing into too many blocks incurs too much communica-
tion. According to our experiments, when running on
n processors, dividing the table into 2n ∗ 2n blocks is a
balance point between load balance and communication
cost.

5. Experiment Results

The datasets used in the experiments are provided
by Cluto[9]. We selected three datasets containing dif-
ferent amount of documents. Table 2 shows the infor-
mation on these datasets.

Dataset Documents Unique Nonzero
Words Elements

cranmed 2431 41681 140658
la12 6279 31472 939407
new3 9558 83487 2295120

Table 2. Datasets used in the experiments.
These three datasets are selected from the
Cluto[9] datasets.

The experiments are conducted on two systems,
namely HPC134 and Tulsa. The HPC134 system con-
sists of two Intel quad-core CPUs. Each CPU encapsu-
lates two chips. And each chip contains two processor
cores and an L2 cache shared by the two cores. The
Tulsa system has four Intel dual-core CPUs, each of
which contains two cores sharing L3 cache. Detailed
information about the two machines is shown in Table 3.

5.1. Effect of the Blocking and Job Scheduling
Algorithms

During the parallelization of the program, we pro-
posed a blocking algorithm and a job scheduling algo-
rithm to achieve load balance. In this section, we con-

HPC134 Tulsa
of CPUs 2 4
cores/CPU 4 2
of cores 8 8
L1 D-cache 32KB 32KB
L2 cache 4MB/2cores 2MB
L3 cache none 16MB/CPU
main memory 6GB 4GB

Table 3. Machines used in the experiments

duct experiments to show the effect of these two algo-
rithms.

The purpose of the blocking algorithm is to divide
the datasets evenly, so that better load balance can be
achieved. Table 4 shows the 4∗4 blocking results of the
three datasets. We compared our algorithm (FD) with
a simple algorithm which divides the blocks to make
them have same amount of rows and columns. Note
that the nonzero elements in la12 are almost evenly dis-
tributed in the matrix. As a result, both algorithms per-
form well on la12. We will focus our discussion mainly
on new3 and cranmed.

We can see from Table 4 that the simple algorithm
is not able to divide the blocks evenly for datasets new3
and cranmed. The number of nonzero elements in the
blocks differs by orders of magnitude, and some blocks
even contain no nonzero elements. Moreover, the sim-
ple algorithm tends to put most of the elements in the
first row, which makes these blocks unable to be pro-
cessed in parallel. Even if we apply the “heaviest-
weighted first”, i.e. process the blocks with the most
nonzero elements first, there will still be great imbal-
ance, for the blocks in the first row can only be pro-
cessed by one processor at a time.

On the contrary, our algorithm adapts well to dif-
ferent datasets, and divides them more evenly. All the
three datasets are divided into blocks of similar size.
Though there is a block with only 944 nonzero element
in the dataset cranmed, the amount of nonzero elements
in the other blocks are nearly the same, with difference
less than three times.

As a comparison to our job scheduling algorithm,
we implemented a straightforward algorithm, which is
called SearchAll (SA). For a processor which is just fin-
ished with block Bab, the SA algorithm will first search
through all Ba j, j ∈ [0,n− 1] and Bib, i ∈ [0,n− 1] for
a block available. If it fails, it will search through all
the blocks until it finds an available block or there is no
blocks left.

Table 5 presents the effects of the two algorithms
on the dataset new3, where the dataset is divided into

632

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

19770 18532 18143 15790
cranmed 12144 6445 3665 1720
simple 151 5497 8494 4906

0 0 1330 10001
8432 8397 7917 6925

cranmed 8898 8603 7842 6306
FD 13399 8763 5653 3832

944 5887 10259 14531

59037 56566 55519 56383
la12 51535 48858 48261 49159
simple 54799 52731 51658 51658

53798 52398 51080 52288
53155 52921 52708 52668

la12 53599 53077 53415 53684
FD 53056 53045 53139 52200

51822 52496 52216 52527

548428 516401 440373 402650
new3 21477 33193 23358 14323
simple 0 18037 20690 10373

0 0 5639 10859
148261 119947 121885 128855

new3 136793 127450 126670 128969
FD 136883 130776 122117 126811

95165 138280 145837 131102

Table 4. Effect of different blocking algorithms.
This table shows the number of nonzero ele-
ments in each block when the datasets are di-
vided into 4*4 blocks using FairDividing and
simple algorithms.

2n ∗ 2n blocks for n processors. TF tot is the total CPU
time used in an TEM iteration (i.e., the wall clock time
multiplied by number of processors), using our TwoFor-
ward (TF) scheduling algorithm; TF ovh is the time
spent in executing the algorithm; and TF imb is the im-
balance between the processes. The blocking algorithm
used is the FD algorithm described above.

From Table 5, we can see that:

1. TF algorithm is better than SA in terms of total
execution time;

2. the overhead of TF is much less than SA, and it
grows slower with the number of processors;

3. both algorithm exhibits marginal load imbalance,
which proves the effectiveness of our blocking al-
gorithm and the block dispatching algorithm.

Another trend worth noticing is that the margin of
total execution time between TF and SA is less than the
gap in the execution time of the algorithms. The main
reason is that SA makes better use of the cache. The TF
algorithm tends to visit the blocks along the diagonal,
which will incur more cache misses. However, the TF

1P 2P 4P 8P
TF tot 1.1493 1.2048 1.3430 2.0199
TF ovh 0.0001 0.0002 0.0006 0.0550
TF imb 0.0000 0.0531 0.0298 0.0386

SA tot 1.1535 1.2474 1.4506 2.2139
SA ovh 0.0002 0.0583 0.1718 0.3983
SA imb 0.0000 0.0623 0.0574 0.0391

Table 5. Comparison of two job scheduling
algorithms. This table shows the time costs
of two job scheduling algorithms, TwoForward
and SearchAll, on dataset new3 in seconds. The
“tot” rows show the total time spent in each EM
iteration, while “ovh” indicate the time spent
executing the algorithm, and “imb” present the
imbalance between the processors. 1P, 2P, 4P
and 8P stands for 1, 2, 4, and 8 processors.

algorithm is still better than SA, for the SA algorithm
is too heavy-weighted (i.e., the execution of the algo-
rithm is too time-consuming). Therefore, the cost of
executing the algorithm easily overwhelms the benefit
of higher cache hit ratio.

Figure 3 shows the total wasted time of the FD di-
viding algorithm and TF block scheduling algorithm,
including the overhead of the two algorithms and time
wasted for load imbalance, as percentage of the total
execution time. As comparison to the FD dividing al-
gorithm, we implemented a “simple” algorithm that di-
vides the blocks so that they have same number of rows
and columns. The datasets are divided into 2n ∗ 2n
blocks when n processors are used. We use 1P, 2P, 4P
and 8P to indicate the number of processors used. We
will also use these symbols in the following figures and
tables.

� �
� �
� �
� �
� �

� � 	�

��

��

�
� �
� �
� �

� �

� � � � � � � � � � � � � � �

�

�� �

� !
" # � $ � �

Figure 3. Overhead of the blocking algorithms
as percentage of total execution time. 1P, 2P,
4P and 8P indicate the number of processors.

633

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

From the Figure 3, we can see that when using FD
with TF, the wasted time only takes a small fraction of
the total time (less than 5%). On the other hand, using
“simple” algorithm incurs great performance panalty
for poor load balance, and hence much wasted time.
In the case of new3 with eight processors, the wasted
time even takes up more than 65% of the total execution
time. However, the wasted time of FD and “simple” on
the dataset la12 are almost the same. The main reason
is that the nonzero elements in la12 are nearly evenly
distributed across the co-occurrence table.

In conclusion, the FD and TF algorithm have en-
abled us to achieve good load balance at low cost.

5.2. Speedup and Memory Performance

In this section, we examine the speedup of the pro-
gram and its memory characteristics. For the ease of
analysis, we divide the datasets into 16 ∗ 16 blocks in
this experiment.

�
�
�
�

�� � �

	
�

�
�

 � � � � � �
 � � � � � �

��
��

�
 �
� �
� �

Figure 4. Speedup of the program on HPC134

The speedup result on HPC134 system is shown in
Figure 4. We can see that the scalability of the program
on the HPC134 system is unsatisfactory. Although the
speedups from 1P to 2P are acceptable, those of 4P and
8P are poor. The major cause for poor speedup is the
limited memory bandwidth.

For comparison, we tested the speedup of the pro-
gram on the Tulsa system. The Tulsa system also
has eight cores, but it has much higher memory band-
width than HPC134. Figure 5 shows the memory
bandwidth of the two systems, which is obtained with
STREAM[12] compiled using ICC 9.1 and compiler
options “-O3 -xW -openmp”. STREAM reports four
metrics, namely “Copy”, “Scale”, “Add” and “Triad”,
the difference between each other being about 10%.
The memory bandwidth we present here refers to the
result of “Triad”, for its memory access pattern is the

most similar to that of our program.

� � � �
� � � �
� � � �
� � � �

�� ! " #
$%

& '

�
(� � �
) � � �
* � � �
+ � � �

(,) , + , � ,

-.
-/
01

2 3 #
� " � 4 , 5 (* +

6 7 8 9 :

Figure 5. Memory bandwidth of the two sys-
tems

We can see from Figure 5 that the Tulsa system has
much higher memory bandwidth than HPC134, and the
available bandwidth grows gradually with the number
of processors, while that of HPC134 grows little.

;
<
=
>

?@ A B

C
A

D
E
F

G H I E J K A D L M K G N H O

P@
QQ

R D B
F B
> B

Figure 6. Speedup of the program on Tulsa

Figure 6 shows the speedup on Tulsa. As expected,
the speedups on Tulsa are higher than those on HPC134.

To give further insights into the effect of limited
memory bandwidth on our program, we used Intel
VTune to sample the program and get the memory ac-
cess related stalls. Figure 7 depicts the breakup of the
total execution time into memory related pipeline stalls
and other parts. This experiment is performed on the
HPC134 system.

As we can see, the pipeline stalls caused by mem-
ory access take up a large part of the total CPU cycles,
and they grow dramatically with the number of threads.
The high stall mem/total ratio of 1P indicates that our
program is memory-intensive. Although we divided the
datasets into blocks which can fit into L2 cache, it is im-

634

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

��
�	

��
� �
�

� � � � � � � � �

� � � � �

�

� � � �

� � � � �

� � � � �

� �

� � � � � � � � � � � � � �

!" " �#
�
�

Figure 7. Memory related stalls on HPC134

possible to fit the datasets into cache as a whole. Hence
there are still a lot of cache misses, making the program
bandwidth-hungry.

The growth of stalls from 1P to 4P can be explained
by the contention of processors for bandwidth. And we
can also see that the stalls of 8P nearly doubles that of
4P. That is partly because eight processors competing
for bandwidth brings more contention, and partly be-
cause the cache-per-core halves from 4P to 8P, which
incurs more cache misses.

As for the “other” part, it stays nearly the same in
all cases, although there is trivial increase caused by
the increased execution time of the TF algorithm and
the overhead of OpenMP. The only exception is the
cranmed dataset, which shows non-negligible increase
in the “other” part. We analyzed the program and found
that the barrier is causing the problem. The barrier is
used by OpenMP to synchronize the threads. The more
threads used, the more time the barrier takes. However,
for larger datasets like new3 and la12, the time spent
by barrier is just a small fraction compared to the total
execution time. But in the case of cranmed, the bar-
rier time becomes a significant part, which lowers the
speedup. As a result, the speedup of cranmed is gener-
ally lower than the other two, as shown in Figure 4 and
Figure 6.

In conclusion, the limited memory bandwidth of
the HPC134 system prohibits our program from getting
good speedup. In order to achieve better speedup of this
kind of memory-intensive programs on shared memory
systems, higher bandwidth is needed.

6. Conclusions

In this paper, we present the optimization, paral-
lelization and characterization of a PLSA implemen-
tation. By optimizing the implementation, we have

made the algorithm acceptable for usage on datasets of
over 10,000 documents. Based on the optimized code,
we parallelized the program using OpenMP, and pro-
posed a block dividing algorithm and a thread schedul-
ing algorithm. The parallel implementation gets fair
speedup on our multi-core systems. The experimen-
tal results show that the program is memory-intensive,
which needs higher memory bandwidth to achieve good
performance on shared memory systems.

References

[1] Hofmann T.: Probabilistic latent semantic indexing. SI-
GIR ’99 8/99 Berkley

[2] S. Deerwester, S. T. Dumais, G. W. Furnas, Landauer. T.
K., and R. Harshman. Indexing by latent semantic anal-
ysis. Journal of the American Society for Information
Science, 41, 1990.

[3] OpenMP Architecture Review Board. OpenMP specifi-
cations.
Available at http://www.openmp.org

[4] Deerwester S., Dumais S. T., Furnas G. W., Landauer T.
K., and Harshman R.: Indexing by latent semantic anal-
ysis. Journal of the American Society for Information
Science

[5] The Lemur Toolkit for Language Modeling and Infor-
mation Retrieval
Available at http://www.lemurproject.org

[6] P.W. Foltz and S. T. Dumais. An analysis of informa-
tion clustering methods. Communications of the ACM,
35(12):51-60, 1992.

[7] T.K. Landauer and S.T. Dumais. A solution to Plato’s
problem: The latent semantic analysis theory of acqui-
sition, induction, and representation of knowledge. Psy-
chological Review, 104(2):211-240, 1997.

[8] J.R. Bellegarda. Exploiting both local and global con-
straints for multi-span statistical language modeling. In
Proceedings of ICASSP’98, volume 2, pages 677-680,
1998.

[9] CLUTO-Family of Data Clustering Software Tools
Available at http://glaros.dtc.umn.edu/
gkhome/views/cluto

[10] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum-
likelihood from incomplete data via the EM algorithm.
J. Royal Statist. Soc. B, 39:1-38, 1977.

[11] HyperTransport Specification 3.0
Available at http://www.hypertransport.org

[12] STREAM: Sustainable Memory Bandwidth in High Per-
formance Computers
Available at http://www.cs.virginia.edu/
stream/

635

Authorized licensed use limited to: Tsinghua University Library. Downloaded on October 23, 2009 at 11:12 from IEEE Xplore. Restrictions apply.

