PBB: A Parallel Bioinformatics Benchmark Suite for Shared Memory Multiprocessors

Wenguang Chen, Chuntao Hong

Tsinghua University

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

ATIP 3rd China HPC Workshop, November 11, 2007, Reno, NV Copyright 2007 ACM ISBN 978-1-59593-903-6/11/07...\$5.00

PBB: A Parallel Bioinformatics Benchmark Suite for Shared Memory Multiprocessors

CHEN Wenguang HPC Inst., CS Dept., Tsinghua University

Outlines

- Motivation
- Benchmark selection & construction
- Benchmark characteristics
- Performance results
- Conclusions, Q&A

Motivation

- · Wide use of bioinformatics applications
- The trend of multi-core
 => There should be a parallel bioinformatics benchmark
- SPEC CPU2000 may not match the characteristics of bioinformatics workloads well
- Existing bioinformatics benchmarks are not satisfactory
 - => We need a new one

Existing Bioinformatics Benchmarks:

BioBench:

- · does not cover some important domains
- no parallel program

BioPerf:

• includes only one parallel benchmark

BioParallel:

our previous work, includes 5 parallel applications

PBB benchmark suite:

Being more complete

7 applications covering 7 of the most important domains of bioinformatics

Keeping pace with the changing world all the applications are parallelized

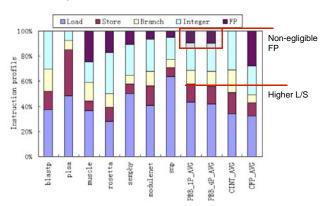
Benchmark Selection & Construction

- 1. Identify the most important application domains
- 2. Choose representative applications for each domain

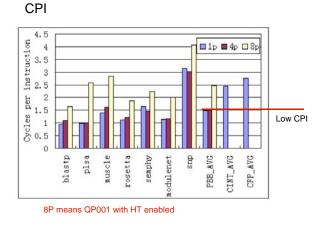
most popular, most advanced

3. Benchmark optimization & parallelization

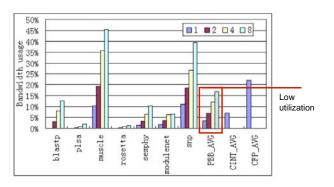
The 7 applications:


- 1. Pairwise sequence alignment: BLAST-P
- 2. Global alignment: PLSA
- 3. Multiple sequences alignment: MUSCLE
- 4. Protein 3D structure prediction: Rosetta
- 5. Phylogenetic tree reconstruction: SEMPHY
- 6. Gene regulatory network learning: ModuleNet
- 7. Pattern study of Single Nucleotide Polymorphisms: $\underset{\ensuremath{\mathsf{SNP}}}{\ensuremath{\mathsf{SNP}}}$

Benchmark Characteristics


Systems Used:

	RefSys	QP001	DC001	Hydra	Osprey	Unisys-Es700
CPU Name	PIII Xeon	XEON	Dual-Core Xeon	Itanium 2	Itanium 2	XEON
CPU Freq.	700MHz	2.8GHz	3.2GHz	1.3GHz	1.5GHz	3.0GHz
L1 D-cache	16KB 4-way	8KB 4-way	16KB 8-way	16KB	16KB	8KB
L2 Cache	1MB 8-way	512KB 8-way	4MB 8-way	256KB	256KB	512KB
L3 Cache		2MB 8-way	-	3MB	6MB	4MB
L4 Cache	- 3	-				32MB
# of Chips	4	4	2	4	4	16
HT Support	N	Y	Y	N	N	Y
Interconnect	FSB	FSB	FSB	FSB	FSB	FSB and Crossba
Memory	1GB	4GB	4GB	4GB	16GB	SGB



Instruction profile:

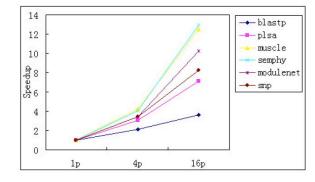
FSB bandwidth utilization

Performance Results

Benchmark scores:

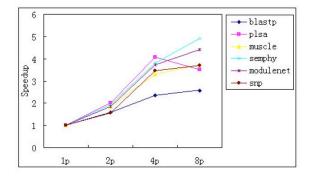
$$PBB_Score = \sqrt[6]{\prod_{1 \le i \le 6} \frac{r_i}{m_i}} \times 100$$

 r_i : time used to run application i on the reference system


 m_i : time used to run application i on the tested system

Rosetta is excluded for it produces random results

Scores of PBB


App.	Ref 114.9	QP001 45.4	DC001 32.0	Hydra 55.6	Osprey 48.0	Unisys-Es700 19.3
Plsa						
Muscle	370.6	75.0	53.0	114	93.0	21.0
Semphy	114	25.2	21.5	49.8	32.2	22.3
Modulenet	68.1	18.2	15.1	62.0	54.8	7.58
Blast-p	308.3	80.0	75.0	87.5	76.0	54.7
SNP	108	27.9	14.7	77.9	68.8	15.7
PBB Scores	100	383	503	208.5	254	756

Parallel speedup

Tested on Unisys-ES700 with 16 Xeon

Hyper Threading Effects

Conclusions

Workload characteristics:

- 1. High percentage of load/store instructions
- 2. Non-negligible floating point instructions, but still significantly lower than SPECCPU 2000FP
- 3. Low CPI
- 4. Low memory bandwidth demand

Thanks Any questions?