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ABSTRACT  
With the dominance of multicore processors, parallel program-
ming has become more important. Transactional Memory is a 
promising solution to synchronation issues that are hurting paral-
lel programmers. While there are a lot of researches on the im-
plementation tradeoffs of TM, there is rare study on the applica-
tions that may utilize the techniques, which is essential to both 
providing feedbacks to the TM designers and to helping potential 
users.  

This paper makes the first step of this work by presenting our 
identification of emerging applications for the comprehensive 
study of TM. The selection is based on application-domains in-
cluding popular server/client softwares, multimedia applications, 
bioinformatics applications, data mining applications, and other 
scientific applications, which cover most of the dwarfs. A prelim-
inary experiment is also provided to illustrate what we can get 
from this work. 
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1 . INTRODUCTION 

As the mainstream vendors are all contributing themselves to the 
development of multi-core processors, the era of monoprocessors 
is gone together with the free lunch of improving the performance 
by merely increasing the clock rate. Concurrent programming and 
parallelism are destined to be introduced to emerging software 
designs. A traditional and typical way of programming multi-
threads is to use locks to perform the synchronization. However, 
controlling the locks could be tricky. While coarse-grained locks 
introduce performance issues, fine-grained locks are error-prone 
and greatly complicate the programs. In the meanwhile, both of 
them are not composable and hard to maintain. 

Transactional Memory (TM), implemented in both hardware and 
software, is proposed as an alternative way to break this situation. 
The target of TM is to shift the burden of managing synchroniza-
tion issues from the programmers to the underlying runtime sys-
tems without severely hurting the performance. Previous re-
searches on the implementation of both STM and HTM show that 
there are good opportunities to achieve this goal [1-7]. However, 

most TM research projects are based on the trivial or small work-
loads and data structures, which are not sufficient to justify the 
effectiveness of TM technology and its stack that can enable a 
wide range of applications for the state-of-art multicore processor. 
As a new programming paradigm, there are many open issues to 
be addressed. For instance, are existing STM language extensions 
sufficient to deploy STM technology in real large multithreaded 
application? What are the key aspects to bring the application 
performance and scalability using TM to the level of performance 
and scalability using fine-grained locks in application? What are 
general methodology of debugging and tuning the TM applica-
tions? Are there enough composable components that could be 
utilized by the users? These issues, while certainly essential, are 
not effectively solved due to lack of handy runtime support to TM 
programming. 

To seek the answers to these questions, we have identified a suite 
of emerging and complex software from different application 
domains. With the recently released prototype version of Intel 
C++ STM compiler, we are planning to reimplement, at least, the 
synchronization parts of these softwares and give rich feedback to 
the TM designers, as well as experiences and possible help to 
incoming TM programmers. Our goals are: 

 Perform a comprehensive study of a wide application domain 
to identify a set of real applications plus several benchmarks 
and develop TM version of these real applications using In-
tel® C++ STM Compiler Prototype Edition [31] 

 Conduct a comprehensive study of performance and pro-
grammability issues based on our TM workloads to compare 
with using coarse-grained locks and fine-grained locks 

 Perform an application domain-specific analysis on the trans-
actional behavior (such as nesting properties, I/O operations, 
read/write set sizes, and transaction length, etc.) of potential 
TM applications 

 Develop new methods to identify and tune TM application 
performance issues. 

This paper presents the first step of our work: the identification of 
applications that are suitable for the study. 
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2. RELATED WORK 
 

Regarding the design of TM, [8] has done a comprehensive sur-
vey, and this part will not be the focus of this paper. As applica-
tions are necessities to evaluate any TM implementation and to 
provide feedback to TM developers to make further improvements, 
there are several works that try to provide or to analysis transac-
tional implementation of programs and benchmarks. According to 
the complexity of the software these works focus, they can be 
divided into 3 categories: simple data structures, single applica-
tion, and complicated application suites. 

2.1 Simple Data Structure  
The use of single data structures to test STM implementations is 
widely applied even from the occurrence of STM systems. And 
most of the relatively early uses of these micro benchmarks are 
covered in the survey of [8]. And it is also used in a lot of recent 
researches that are not covered in the survey [1, 2]. 

2 .2 Single Application 

[9] targets on the workload of SPECjbb2000, which is a bench-
mark for JAVA middleware. By exploring the parallelism within a 
single warehouse, the authors revealed the advantages in perfor-
mance of transactional memory over coarse grained locks. Al-
though the parallelism mainly focuses on the access of a B-tree 
structure which presents all the stuffs in a warehouse, the 3-tier 
architecture of SPECjbb2000 makes this application significantly 
more complicated than single data structures. 

[10] provides one of the earliest suggestions on how to think of 
general purpose applications in a TM view. The author found 
while Lee’s algorithm on routing can be hardly parallelized by 
locks, it could be solved in a transactional manner. Similarly, [11] 
also presents how to apply the idea of transactional memory to 
real programs, and provides feedback to the implementations of 
STM in the view of a user.  

[12, 13] presents a variant of Linux implemented using several 
self-defined HTM primitives. The authors implemented a set of 
HTM semantics, introduced a way to cooperate between locks and 
transactions, and integrated transactions with the OS scheduler. 
This work provides how a legacy OS could utilize TM and its 
performance. Although it basically focuses on HTM, it could 
bring valuable experiences in the development of STM. 

2.3 Complicated Application Suite  
[14] studies the support for TM runtime from different aspects of 
the whole software stack including data structures, OS, language, 
and so on. The paper focuses on the description of major problems 
in each field (such as IO in OS, language features), but doesn’t 
provide experiences from real applications. 

[1] has implemented 5 benchmarks including genome, vacation, k-
means, lybrinth, and bayes, together with several data structures to 
evaluate their implementation of a hybrid TM. However, the ap-
plications they used are relatively small and is hardly representa-
tive.  

[15] presents a benchmark derived from OO7. It by itself is not a 
real world application of any kind. It tries to produce a benchmark 
that could simulate different access patterns of TM applications. 

The idea is to create a complex shared data structure and perform 
different operations to access it concurrently and in different pat-
terns. STMBench7 has generalized four categories with a total of 
45 operations to constitute a dedicated full testcase. However, 
while the benchmark provides an alternative way to test the gen-
eral performance of an STM implementation, it is difficult to si-
mulate varied application domains since it relies on the users to 
generalize the access pattern of their programs, which may costs a 
lot of human resource and is error-prone as well. Besides, the data 
structure it uses is regular and thus could not be representative to 
certain workloads. 

[16] performes analysis on the transactional behavior of up to 35 
multithreaded applications by lexically replacing all the lock pri-
mitives to corresponding TM marks. The analysis focuses on the 
transactional length, read-set and write-set sizes, and the frequen-
cy of nesting and I/O operations. The work groups the applica-
tions by the programming models the programs adopt (JAVA, 
POSIX, OpenMP, ANL Macros). However, as the work suggests, 
it focuses on the code analysis and transactions are not executed 
in reality. Thus it cannot analyze certian transaction behaviors 
such as retries, which are identical in the performance analysis. 

[35] presents the work of identifications of bugs in popular con-
current software. The work analyzes these bugs and describes how 
TM could help avoid them, and at the same time proposes sugges-
tions on how future TM implementations should be designed to 
help programmers. However, this work focuses only on the con-
currency bugs instead of the whole design of applications.  

[17] presents our closest relative comprehensive study on TM 
practice. The paper implements a Java based software transaction-
al memory runtime and a suite of corresponding Java benchmarks 
including SPECjbb2000, DaCapo hsqldb, STMbench7, and a set 
of micros. However, they are all implemented in JAVA, which 
can be significantly different from C/C++ in both performance 
and programming model. Also, mainstream databases and servers 
are mostly implemented in C/C++. 

3 . APPLICATIONS OVERVIEW 
The categories and their related programs are listed in Table 1. It 
presents the short application description together with their lines 
of code (LOC) and possible related dwarfs[29]. In our study, we 
generalized 5 categories of emerging applications. That is popular 
softwares, multimedia applications, bioinformatics supplications, 
data mining programs, and other scientific programs. Except for 
the popular softwares, the other categories are selected basically 
because they are becoming increasingly important and essential to 
our lives, and they are also consuming more and more computing 
power.  We are also trying to cover as many as possible the 
dwarfs described in [29]. As a result, we find the applications 
relate to approximately 11 out of the 13 dwarfs. Note however, 
the estimated mapping of the applications to their related dwarfs is 
based on the lexical search of the application properties on Fig-
ure6 of [29], and the real mapping may depend on the application 
implementation. For example, the SVM may relate to Dense Li-
near Algebra or Sparse Linear Algebra depending on its imple-
mentation. Thus an exact mapping can only be performed after 
solid understanding and implementation of the application. Also, 
it is very possible that the applications we marked N/A in the 
dwarf  column turn out to be related to certain dwarfs. The appli-
cations also cover the three key aspects of the RMS applications 
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Table 1: The identified 23 applications that will be used in our study 
Application Source LOC  Description Related Dwarf(s) 

Popular Software and Tools 
STL GNU GCC 70K The C++ Standard Template Library N/A 

MCSTL GNU GCC 15K The multi-core ready C++ Standard Template Library N/A 

Apache HTTP 
Server 

Apache 270K An Apache implementation of HTTP web server Finite State Machine 

FastDB FastDB 31K A Main Memory Relational Database Management  
System 

Combinational Logic/ 
Dynamic Programming 

FileZilla Server FileZilla 50K A popular FTP server provided by Mozilla Finite State Machine 

Multi-core Ma-
pReduce 

Stanford Phoe-
nix 

1.5K The implementation of MapReduce on CMP platform 
provided by Stanford 

Monte Carlo 

Multimedia Applications 
Sphinx 3 ALPbench 30K An application for speech recognition N/A 

RayTrace Tachyon 10K Tachyon ray tracer that renders 3-D scene Monte Carlo 

MPEG-2 Encod-
er/Decoder 

ALPbench 28K Standard video Encoder/Decoder Dense Linear Alge-
bra/Structured Gr-

ids/Finite State Machine

Bioinfomatics 
ClustalW_smp BioPerf 26.7K Multiple sequence alignment for nucleotides acids N/A 

Hmmer BioPerf 4K Hidden Markov Models for aligning multiple sequences Graphical Models/ 
Sparse Linear Algebra 

FASTA BioPerf 48K Local similarity search programs N/A 

GRAPPA BioPerf 21K Genome Rearrangements Analysis under Parsimony and 
other Phylogenetic Algorithms 

N/A 

MST GaTech 2.9K Minimium Spanning Forest Combinational Logic 

Data Mining 
ScalParC MineBench 2K Decision tree classification Graph Traversal 

k-Means MineBench 1.3K Mean-based data portioning method Dense Linear Algebra 

SVM-RFE MineBench 4.5K Support Vector Machines - Recursive Feature Elimination Dense/Sparse Linear  
Algebra 

SEMPHY MineBench 20K Structure learning algorithm based on phylogenetic trees N/A 

Scientific programs 
FFT FFTW 6K 3D Fast Fourier Transformation FFT 

Art SPEComp 2K Image Recognition/Neutral Network N/A 

Equake SPEComp 1.6K Earthquake Modeling N/A 

Barnes-Hut SPLASH-2 3K Simulates the interactions in a system of N bodies N-Body 

SSCAv2 GaTech 1.7K DARPA graph theory benchmark Graph Traversal 

 

proposed by Intel [36]. For example, Sphinx in the multimedia 
applications and SVM-RFE in the data mining applications are 
related to Recognition, most of the data mining applications are 
related to Mining, and the popular softwares, Barnes-Hut, and 
Equake are related to Synthesis [29]. 

We have also considered the implementation complexity. As will 
be suggested in Section 4, we assume it takes 1 developer 3 hours 
to convert 1K lines of code. As there are totally about 635K lines, 

ideally, it require effort from 3 developers over the course of 
about 80 days. And the time cost is acceptable. 

 When dealing with applications of specific field, we tend to rely 
on the latest emerging benchmarks in that field, because we be-
lieve that the experts know more about their own area then anyone 
else. The detailed and exact explanations of each application can 
be found on their corresponding benchmarks. This section will 
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only make a brief introduction to them and include our reasons of 
selection. 

3 .1 Popular Software and Tools 
Popular software and tools here refer to the applications that are 
targeted on popular purposes and are publicly available. They are 
usually complex and in large scales. The purpose of selecting 
large software is in three fold: 

 To provide available transactional components and software 
for public use; 

  To find the difficulties and problems in using transactional 
memory as a synchronization mechanism to implement 
large scale software; 

 To test the performance of STM implementations in real 
world.  

C++ Standard Template Library is a widely used component in 
numerous softwares developed in C++. However, its implementa-
tion is not compatible with current STM solutions. Although Intel 
C++ STM compiler has provided some kind of mechanisms to 
automatically apply transactional semantics to legacy codes, it is 
necessary to provide a hand tuned tm-ready version of STL given 
its importance. Also it is not recommended to rely on the compiler 
to perform the analysis in such complicated and crucial environ-
ment. A tm-ready version of STL should readily be used with 
guaranteed thread-safety and transactional semantics in any paral-
lel programs that utilize transactional memory or not. 

 GNU GCC 4.3 has integrated Multi-Core STL[18], which is a 
partly parallelized version of STL. It aims to accelerate the per-
formance of programs even without the programmers’ knowledge 
on parallel programming. Since it can be seamlessly integrated to 
legacy codes that utilize STL, there are various opportunities to 
compare the transactional memory with locking mechanism on 
performance issues. 

 Apache HTTP Server[19] and FileZilla FTP Server[20] are two 
popular web/FTP servers that are servicing millions of people 
every day. FastDB[21] is a well-known in-memory database man-
agement system, which is the origin of transactional memory.  

MapReduce[22] is first proposed and implemented by Google on 
clusters, and latterly implemented on CMP platforms as Phoe-
nix[23] by Stanford. It provides an alternative and promising ab-
stract of concurrent programming style and is effectively applied 
to a variety of applications.  

Except C++STL, all the other selected software are heavily 
threaded and thus may easily expose synchronization problems 
and provide potential to exhibit the advantages and shortcomings 
of each TM implementation. 

3 .2 Multimedia Applications 
With the increasing computing power of processors and the de-
manding from both entertainment and industry, multimedia appli-
cations become an important workload. A significant feature of 
current multimedia applications is their ever increasing complexi-
ty. In addition, more and more applications, such as 3-D games 
and video playbacks, require real-time processing of multimedia 
data. At the same time, most multimedia applications show signif-

icant parallelism, such as processing every word in a sentence in 
parallel or rendering different key frames simultaneously.  

ALPBench[24] provides a suite of emerging complex multimedia 
applications that are parallelized in 3 levels (thread-, data-, and 
instruction-level). In our study, however, we only make use of the 
thread level parallelism. 

CMU Sphinx 3 is a speech recognizer, which identifies each word 
in a speech and converts them into texts. Speech recognizer be-
comes more and more widely used particularly in the field of 
Human Computer Interface and security, and most emerging OSes 
are utilizing them as fundamental functionality (e.g. Windows 
Vista, Symbian).  

A ray tracer is used to render a scene given a scene description. 
The input, which is a scene description, usually contains the in-
formation of the objects, the viewers, and light such as location 
and shapes. And the output is the rendered scene. This technology 
is widely used in the area of 3-D games, virtual reality and model-
ing. 

MPEG-2 Encoder and Decoder are the applications to convert 
video frames into compressed MPEG-2 bit-stream and to convert 
it back. The technology is essential to almost all the video related 
applications including their recording, editing and playback. Cur-
rently there are several new video encodec standard such as 
MPEG-4 and H.264. However, their algorithms are essentially 
similar to that of MPEG-2. 

Note that the application of FaceRec, which recognize faces from 
pictures, is abandoned in our study because it exposes rare infe-
rences between threads and thus is not suitable to exhibit the fea-
tures of TM. 

3.3 Bioinformatics Workload  
Bioinformatics technology has become an important research field 
as genetic data is growing exponentially. It has shown its necessi-
ties in numerous critical industries such as medicine, agriculture, 
and environment. Bioinformatics technology could help research-
ers identify interesting patterns or extract useful information from 
long sequence of genome. As these applications have become one 
of the largest computing power consumers, it is necessary to ob-
serve their parallelism. 

  There are several benchmarks available on Bioinformatics, Bio-
Perf[25], BioBench[26], and BioInfoMark[27], to name a few. 
BioPerf is a most recent one among them, and has parallelized 4 
out of 10 of the applications. To demonstrate the features of TM, 
we have adopted the 4 parallelized applications. 

 ClustalW_smp is a parallelized version of ClustalW, which takes 
multiple DNA and protein sequences as input, align them based 
on their ancestral relationships, and output the results. 

 Hmmer aligns multiple sequences by the means of Hidden Mar-
kov Model. It is constituted of several small applications. Among 
these applications, we are only adopting the threaded Hmmpfam, 
which search the transcriptional regulatory protein. 

 As Blast, FASTA also does pairwise local alignment. However, 
their algorithms are essentially different. It is constituted of a set 
of small applications, which perform similarity search for se-
quence databases. 
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GRAPPA stands for Genome Rearrangements Analysis under 
Parsimony and other Phylogenetic Algorithms, and is used to 
reconstruct phylogeny. It provides the first linear-time implemen-
tation of inversion distances improving upon the original poly-
nomial time approach.  

MST is a combinational problem widely used in various fields, 
including, but not limited to, medical imaging, proteomics and 
cancer detection. The GaTech parallel implementation[34] of 
MST achieves good speedup over a wide range of input graphs. 

3.4 Data Mining Applications  
Data mining is the technique to help researchers to make discove-
ries of potentially useful information in a large amount of data. It 
is originally only limited to the fields of scientific research and 
medicine. However, with the exponentially growing size of in-
formation especially on the Internet, it also becomes essential to 
increasingly more fields such as AI, web developing, and even 
HPC. Since the sizes of the target data sets are usually extremely 
large, data mining process often costs large amount of computing 
power. These features make data mining workloads suitable ap-
plications to illustrate the computing power of current multicore 
platforms. 

 As an emerging research domain, there are not many alternative 
applications to select. And the only benchmark suite by far is 
MineBench[28]. It broadly classifies the applications of data min-
ing into several categories and selects 5 top categories based on 
how commonly they are and will be used in the industry. This 
benchmark is also suitable for our study because all the applica-
tions are full-fledged implementations and parallelized as well. 
We have randomly selected 4 applications, each from a distinct 
category. 

ScalParC comes from the category of classification. It is an effi-
cient and scalable variation of decision tree classification, which 
is faster than other classification method on high-performance 
data mining. The general process is to recursively splitting the 
training dataset based on an optimality criterion until all records 
belonging to each of the partitions bear the same class label. 

K-means belongs to the category of clustering. It is a well-known 
algorithm that is used to converge all the objects to k (user-
specified) centers by iteratively applying the similarity function to 
each object and the k cluster centers generated in the last iteration. 

SVM-RFE stands for Support Vector Machines – Recursive Fea-
ture Elimination, which is a feature selection method. It achieves 
the selection by recursive feature elimination process. The appli-
cation is widely used in gene expression. Note that the scalability 
of SVM-RFE is one of the worst one among other applications in 
the benchmark due to locking of memory structures, it is ideal to 
show the performance changes TM could bring. 

SEMPHY is a structure learning algorithm that is based on phylo-
genetic trees, which represent the genetic relationship of species. 
It finds the best tree topology and branch lengths representing the 
distance between two neighbors by means of probability estima-
tion algorithm. 

3 .5 Other Scientific Applications 
Except the workloads in specific domains been identified, we are 
trying to seek more suitable applications in other scientific area. 

The general guideline is to cover more dwarfs that are present in 
[29]. For example, FFT from FFTW[32] is identified as spectral 
method, and Barns-Hut is a representative program of the n-body 
method. SSCAv2[33] is a graph algorithm benchmark suite that 
contains 4 kernels (graph generation, large sets classification, sub-
graphs extraction, and graph clustering). Also, it is expected to 
include some SPEC benchmarks such as those from SPE-
Comp[30], which are ideal applications to present the effective-
ness of parallelism. 

4. PRELIMINARY EXPERIMENTS  
Currently, we have only observed and converted Phoenix. The 
experiment analysis is based on both programmability issue and 
performance. 

4.1 TM Interfaces of Intel C++ STM Compi-
er l 

Intel C++ STM compiler assists the development of TM programs 
by providing simple language extensions that present TM seman-
tics. The extensions basically serve two purposes: mark the atomic 
block, and mark functions that are called inside atomic blocks. 
To mark a code block as an atomic block (e.g. a transaction), the 
extended keyword __tm_atomic is used. All the instructions (cur-
rently except irrevocable code such as I/O operations) inside the 
__tm_atomic marked block are executed in transaction. However, 
to apply the transactional semantics to the functions that are called 
inside a __tm_atomic block, one should mark either tm_callable 
or tm_pure on the function definition. The former one declares 
that there are accesses to shared variables in the functions, and 
thus the compiler generates transactional accesses to them auto-
matically. On the other hand, the compiler does not apply any 
transactional semantics to a function marked with tm_pure,  and it 
should be guaranteed by the programmers that these functions do 
not access shared variables. 
More detailed descriptions of the compiler can be found in the 
manual on [31]. 
 

4 .2 Implementation Method 
The general converting process of Phoenix turns out to be fairly 
easy and straightforward given the language extensions provided 
by the compiler. The basic process is simply converting locking 
statements to TM marks (e.g. __tm_atomic), and annotating cer-
tain routines to be one of the TM attributes (e.g. __tm_callable). 
However, the memory manipulation in the critical regions is a 
problem. While we can implement transactional memset, imple-
menting transactional memory allocation/free is not trivial, and 
cannot be easily solved by the compiler of version 1.0. Users have 
to deploy their own memory allocation policy in order to utilize 
the TM semantics. Luckily the prototype 2.0 has provided transac-
tional version of memory allocation/free operations. In general, 
except for reimplementation of memset, only 10 out of 1500 lines 
of code are modified. Also there are slight modifications in some 
of the user programs. 

The performance test of TM_Phoenix is carried out on a 2-way 4-
core Xeon platform. The transactional behavior of each program 
is collected by setting ITM_STATISTICS to “verbose”. 
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4.3 Experimental Results  
Excluding the memory operation issues, the converting process 
takes 1 developer 2 hours. That is, about 750 lines of code per 
hour. Since there may be unforeseeable problems in the future 
development, and we are not familiar with applications from other 
domains, we make a conservative estimate that it will cost 3 hours 
per developer to process 1K lines. This estimate also agrees with 
the result in [17]. 

From the implementation process discussed above, we’ve learned 
two issues related to the interfaces that should be provided by a 
TM solution targeted on industry use: 

 Scalable memory allocation and deallocation operations 
should be provided by the runtime. 

 Certain libraries (such as memset) are expected to be provided 
to ease the programming and make use of the composability 
of TM. 

Table2: speedup of WordCount      Table3: speedup of Histogram 

procs P TP 

serial 1 1 

2 1.979 1.953 

4 4.073 4.009 

8 5.242 5.281 

 
Table4: speedup of ReverseIndex       Table5: speedup of Kmeans 

procs P TP  procs P TP 

serial 1 1  serial 1 1 

2 5.049 4.323  2 2.727  2.457 

4 12.187 10.433  4 4.691  4.716 

8 21.589 19.125  8 7.816  7.871 

 
Table2, 3, 4, and 5 show the speedup of the converted Phoenix 
(TM_Phoenix). The programs and datasets are all provided by the 
Phoenix package. From the speedup, we find that the 
TM_Phoenix shows the same scalability as the original one. 
While the TM versions tend to invoke some overhead, there is no 
significant difference. This is due to the relatively short critical 
regions in both the system and the user programs, which can also 
be demonstrated by the following statistics. 
Table 6, 7, 8, and 9 present the transactional behavior of each 
program. It includes the number of transactions (Txns), the num-
ber of retries (Retries), and how many bytes do they read/write in 
transaction. From the statistics, we could easily find that the num-
ber of retries grow significantly with the number of threads. For 
ReverseIndex, when we are running 8 threads, there are 24 times 
             Table6: transactional behavior of WordCount 

procs Txns Retries 
BytesRead BytesWritten 

Mean Total Mean Total

2 687 0 49.94 34311 18.83 12936

4 695 4 49.7 34539 18.63 12948

8 711 8 49.14 34939 18.22 12956

 

            Table7: transactional behavior of Histogram 

procs Txns Retries
BytesRead BytesWritten 

Mean Total Mean Total

2 21718 29 59.61 1294636 19.86 431304

4 21722 271 59.93 1301908 19.9 432272

8 21730 491 60.23 1308744 19.93 433148

 

            Table8: transactional behavior of ReverseIndex 

procs Txns Retries
BytesRead BytesWritten 

Mean Total Mean Total

2 6792 41 170.3 1156680 104.17 707556

4 6796 177 170.6 1159660 104.16 707868

8 6804 974 172.9 1176400 104.2 708992

 

            Table9: transactional behavior of Kmeans 

procs Txns Retries
BytesRead BytesWritten 

Mean Total Mean Total

2 12432 24 43.87 545432 21.2 263520

4 12544 79 43.76 548908 21.04 263884

8 12768 197 43.49 555332 20.7 264292

 

of the number of retries than that of 2 threads. This result indi-
cates two concerns that relate to the scalability of TM programs: 

 For the TM runtime designers, they should pay attention to the 
behavior of the runtime on transaction aborts. Although the 
percentage of retries is not so significant now (a maximum of 
0.143%), it may grow very fast when we are running on more 
and more cores using numerous threads.  

 For the programmers, they should also realize that the possi-
bility of retries is increasing rapidly when there are more 
threads, and they should put efforts in minimizing the over-
head of abort, that is, decreasing the memory accesses in the 
transactions. The Phoenix programs we observe serve good 
examples. Despite the increasing number of retries, they are 
scaling well because they invoke rare memory accesses (see 
the “mean” column of the BytesRead/BytesWrite, which indi-
cate how many bytes does a transaction access on average).  

Note however, although reasonable, the results here are still not 
representative to all the applications from various domains. A 
comprehensive study can only be done with all the applications 
rewritten in TM. 

5. CONCLUSIONS AND FUTURE WORK  
This paper presents our identification of emerging applications for 
transactional memory. The applications are collected from various 
different application domains including popular softwares, multi-
media applications, bioinformatics applications, data mining ap-
plications, and several other scientific applications.  

Preliminary results show that with user-friendly TM interfaces, 
programming in a TM model can be convenient. And the perfor-
mance is not significantly hurt. However, there are still a lot of 
works to do to ease the programming, for example, the library 
support and memory allocation. And there are also issues that we 
should pay attention to in order to guarantee the scalability. 

procs P TP 

serial 1 1 

2 1.19 1.1914

4 1.7957 1.793

8 1.913 1.9262
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Our future work includes implementing all the identified applica-
tions in TM, and identifying potential issues and making sugges-
tions on the further TM runtime for industry use. We will also 
perform a comprehensive study on the various transactional beha-
vior of these representative applications based on our implementa-
tion. 
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