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Abstract
Feedback-directed optimization (FDO) is effective in improv-
ing application runtime performance, but has not been widely
adopted due to the tedious dual-compilation model, the dif-
ficulties in generating representative training data sets, and
the high runtime overhead of profile collection. The use of
hardware-event sampling to generate estimated edge pro-
files overcomes these drawbacks. Yet, hardware event sam-
ples are typically not precise at the instruction or basic-block
granularity. These inaccuracies lead to missed performance
when compared to instrumentation-based FDO. In this pa-
per, we use multiple hardware event profiles and supervised
learning techniques to generate heuristics for improved pre-
cision of basic-block-level sample profiles, and to further im-
prove the smoothing algorithms used to construct edge pro-
files. We demonstrate that sampling-based FDO can achieve
an average of 78% of the performance gains obtained us-
ing instrumentation-based exact edge profiles for SPEC2000
benchmarks, matching or beating instrumentation-based FDO
in many cases. The overhead of collection is only 0.74%
on average, while compiler based instrumentation incurs
6.8%–53.5% overhead (and 10x overhead on an industrial
web search application), and dynamic instrumentation incurs
28.6%–1639.2% overhead.

Categories and Subject Descriptors C.4 [PERFORMANCE
OF SYSTEMS]: Reliability, availability, and serviceability;
C.4 [PERFORMANCE OF SYSTEMS]: Modeling techniques;
D.3.4 [PROCESSOR]: Optimization; D.3.4 [PROCESSOR]:
Compilers

General Terms Algorithms, Design, Performance

Keywords Feedback-Directed Optimization, Sampling Pro-
file, Performance Counters
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1. Introduction
Many compiler optimizations, for example procedure inlin-
ing, instruction scheduling, and register allocation benefit
from dynamic information such as basic block frequency and
branch taken / not taken ratios. This information allows the
compiler to optimize for the frequent case, rather than using
probabilistically estimated frequencies or conservatively as-
suming that all code is equally likely to execute. Profiling is
used to provide this feedback to the compiler.

The traditional approach to profile-guided optimization in-
volves three steps. First, the application is compiled with spe-
cial flags to generate an instrumented version of the program
(instrumentation build). Next, the instrumented application is
run with training data to collect the profile. Finally, the appli-
cation is recompiled using the profile to make better optimiza-
tion decisions (feedback-directed optimization (FDO) build).

Unfortunately, there are several shortcomings in this ap-
proach. First, it requires compiling the application twice. For
applications with long build times, doubling the build time can
significantly degrade programmer productivity.

Second, the instrumentation and optimization builds are
tightly coupled, thereby preventing reuse of previous profile
collection. For example GCC requires that both builds use
the same inline decisions and similar optimization flags to
ensure that the control-flow graph (CFG) that is profiled in
the instrumentation build matches the CFG that is annotated
with the profile data in the FDO build.

Third, collecting the profiles requires the appropriate ex-
ecution environment and representative input. For example,
profiling a transaction processing application may require an
elaborate database setup and a representative set of queries
to exercise the application. Creating such an environment and
identifying a set of representative input can be very difficult.

Fourth, the instrumentation build of an application typi-
cally incurs significant overhead (reported as 9% to 105%
[3, 4], but observed to be as much as 10x on an industrial
web search application) due to the additional instrumentation
code that is executed. While scaling down inputs may ame-
liorate the problem, for the profiles to be useful, they must
accurately reflect the application’s real usage. Crafting an in-
put that is sufficiently scaled down to facilitate fast and easy
profiling while retaining high fidelity to the real workload is
difficult. The problem is exacerbated by constant application
changes potentially making old profiling inputs inapplicable



to new versions of the application. Furthermore, the high run-
time overhead can alter the critical path of time critical rou-
tines, e.g., OS kernel codes, for which getting an instrumenta-
tion based profile is not easily possible in the first place.

These limitations often lead developers to avoid FDO
compilation and forgo its associated performance benefits.
To overcome these limitations, we propose skipping the in-
strumentation step altogether, and instead rely on sampling
events generated by the performance monitoring units (PMU)
of modern processors to obtain estimated edge profiles. The
sample data does not contain any information on the interme-
diate representation (IR) used by the compiler. Instead, source
position information in the debug section of unstripped bina-
ries is used to correlate the samples to the corresponding basic
blocks during the FDO build.

This approach has two key benefits. First, since source po-
sition information is used to correlate the profile to the pro-
gram being compiled, this approach eliminates the tight cou-
pling between the instrumentation and FDO builds. Profiles
collected on older versions of a program can be used by devel-
opers, thus eliminating dual compilation in the normal work-
flow. Second, the overhead of profile collection is significantly
lower since no instrumentation code is inserted, typically in
the range of 2% or less.

The low overhead of profiling together with a loose cou-
pling between the profiling build and the FDO build offer
compelling use cases. For example, in an Internet company,
profile collection can occur by infrequently attaching to stan-
dard binaries running on production systems. The data col-
lected can be stored in a profile database for future FDO
builds. This usage model further eliminates any potential dis-
crepancy between profile input data and actual usage patterns
observed in the deployed application.

Using hardware performance monitoring events to estimate
execution profiles is, however, not a panacea. First, sampling
provides instruction frequencies, rather than edge frequencies,
and it has been shown that it is not possible to transform state-
ment profiles into exact edge profiles in general [15]. Second,
to avoid having performance monitoring slow the processor’s
execution, many tradeoffs are made in the design of modern
PMUs leading to imprecise sample attribution. The instruction
address associated with an event by the PMU is often not the
true address at which the event occurred. To complicate mat-
ters further, the distance between the instruction that caused
an event and the instruction to which event is attributed is typ-
ically variable. Our experiments show that even when using
advanced PMU features (e.g., Precise Event-Based Sampling
(PEBS) mode on Intel Core 2 processors), events aggregate on
particular instructions and are missing on others. While these
phenomena may not be problematic for performance debug-
ging, they create significant challenges for using sample pro-
files in FDO.

In this paper, we present methods to mitigate these prob-
lems and use heuristics to derive relative basic block and edge

frequency count estimates from the sample profiles. Below,
we summarize the primary contributions of this work.
1. We develop a machine learning approach to identify the

hardware event most closely correlated to the true execu-
tion frequency of program instructions.

2. We identify hardware effects which negatively influence
sample distribution, namely synchronization, sample skid,
and aggregation/shadow effects.

3. We introduce a hueristic approach, based on sampling mul-
tiple hardware events, that mitigates the systematic bias in-
troduced by these hardware effects. Specifically, we show
how sample profiles from ancillary hardware events can be
used to predict which basic blocks are over/under-sampled,
and how this prediction can be used to tune parameters in
MCF, the algorithm used to smooth inconsistencies in the
primary sample profile.

4. We build a framework to study the limits of the accuracy
that can be achieved with the currently available sampling
quality and intra-procedural analysis scope.

5. Finally, we present an evaluation of the efficacy of the
proposed approach. We present results from an implemen-
tation of sample-based FDO in the GCC compiler. Overall,
we show that PMU sampling-based FDO, combined with
the proposed smoothing heuristics, can achieve 78% of the
performance gains obtained using instrumentation-based
FDO for SPEC2000 benchmarks. However, sampling-
based FDO, on average, incurs only a 1% profiling over-
head (2.47% in the worst case) as compared to the 22%
profiling overhead (10x on an industrial web search appli-
cation) incurred by compiler-based instrumentation.
The rest of the paper is organized as follows: Section 2

describes hardware event sampling and explains how it can be
used to estimate a basic block profile and derive an estimated
edge profile. Section 3 then describes anomalies observed in
the raw PMU samples. Section 4 proposes several heuristics to
improve the quality of the edge profiles inferred from the raw
data. Section 5 then describes the experimental evaluation of
PMU sampling-based FDO. Section 6 describes related work
in the area. Finally, Section 7 discusses conclusions and future
work in sampling-based FDO.

2. Inferring Profiles with the PMU
This section describes how sampling works with most modern
performance monitoring units, and how PMU sampling can be
used to devise an edge profile for an application.

2.1 Hardware Event Sampling
The performance monitoring unit on a modern micro proces-
sor is usually organized as a collection of counters that can
be configured to increment when certain hardware events oc-
cur. For example, counters can be configured to increment on
each clock cycle, each time an instruction retires, for every
L2 cache miss, etc. The raw contents of these counters can
be dumped at program exit to get summary information about
how the program executed. Alternatively, the counters can be



used for sampling. In this mode, the PMU is configured to
generate an interrupt whenever a counter overflows. When
the interrupt triggers, performance monitoring software can
record the system state (e.g., the program counter (PC), regis-
ter contents, etc.). This recorded data forms the sample profile
for the application.

Sampling a counter that increments each time an instruc-
tion retires (e.g., INST RETIRED on x86 processors) pro-
vides a natural way to estimate a basic block profile. Each
time the counter overflows, the PC is recorded. Then, for
each basic block, the sample counts for all the instructions
in the basic block are summed and normalized by the number
of instructions in the block. This guarantees that large ba-
sic blocks do not receive higher profile weights than smaller
blocks. In the literature, this approach to sampling has been
called frequency-based sampling [22]. An alternative to this
approach is time-based sampling [22], where processor cy-
cles, rather than instructions, are counted. Unfortunately,
time-based sampling biases the sample towards basic blocks
that take longer to run than others. Section 4.1 compares both
approaches and confirms the hypothesis that the frequency-
based approach most closely approximates the true basic
block frequencies. The remainder of section 4 examines how
other counters may be used to correct for anomalies observed
in the frequency-based sample profiles.

2.2 Using the Profile in the Compiler
For the sampling-based profile to be usable by the compiler,
the instruction-level profile must be converted into a pro-
file annotated onto the compiler’s intermediate representation
(IR). To achieve this, the instruction-level samples are first at-
tributed to the corresponding program source line using the
source position information present in the debug information.
The execution frequency for each source line is stored in the
feedback data file.

During the FDO build, the compiler reads the profile data
to annotate the CFG. Each basic block consists of a number
of IR statements. The source line information associated with
the individual IR statements is used to determine the list of
source lines corresponding to a basic block. The basic block
sample count is then determined by the frequency of source
lines corresponding to it. Theoretically, the frequency of all
source lines corresponding to a basic block should be the
same. However, as will be discussed in Section 5.2, source
correlation can be skewed. A voting algorithm (e.g., average
or max) is designed to assign the most reliable frequency as
the basic block sample count.

By using source line information to record profiles, the
coupling between the binary used for profile collection and
the FDO build is greatly relaxed. This allows effective re-
use of the collected profiles. For example, when there are
minor source code changes between profile collection and
the FDO build, the list of source code changes (change-list
descriptions) can be used to update the profile recorded to
better match the source code being compiled with FDO.

2.3 Constructing Edge Profiles
Due to errors and noise in sampling, the basic block counts
obtained via sampling may not be consistent. That is to say,
for a given block, its sample count will not always equal
the sum of the sample counts of its successor or predecessor
blocks. To make the counts consistent and to obtain an edge
profile from the basic block profile, we translate the problem
into an instance of the minimum cost flow (MCF) problem. In
our implementation, we use MCF twice. First, before creating
the sample feedback file, an MCF prepass is performed on
instruction level profile. During the prepass, a binary level
CFG is built for each procedure, the instruction level profile is
annotated on the CFG, and MCF is used to refine the profile
(detailed in Section 4). This refined profile is used to create
the profile feedback file. Second, after reading the profile
feedback file, the compiler uses MCF to translate the basic
block profile into an edge profile. The details of formulating
the basic block to edge profile conversion problem as an MCF
problem can be found in the literature [12, 16]. Here, we
describe a few salient details.

An instance of the MCF problem consists of a graph G =
(V,E), where each edge has a capacity and a cost function.
The objective is to assign a flow to each edge such that for
each edge, (a) the flow is less than the edge’s capacity, (b) for
a given vertex, the sum of the flows on incoming edges equals
the sum of the flows on outgoing edges, and (c) that over the
whole graph, the sum of the costs is minimized.

For profile smoothing, the graph used in MCF is known
as the residual graph and it is based on a function’s CFG.
However, each basic block is split into two nodes, the incom-
ing edges to the block connect to the first node in the pair,
and the outgoing edges originate at the second node in the
pair. The two nodes are connected with a forward and reverse
edge. Sending flow through the forward edge corresponds to
increasing the basic block count, and sending flow through the
reverse edge corresponds to decreasing the basic block count.
Since a solution to MCF seeks to minimize cost, the solution
can be biased in favor of raising a particular block’s weight by
assigning its forward edge a low cost. Similarly, one can bias
in favor of lowering a block’s weight by assigning its reverse
edge a low cost. Additionally, the solution can be biased to-
wards altering a specific block’s weight by giving its forward
and reverse edges a higher cost. We exploit this property of
MCF in Section 4.

3. Problems Observed
Sampling is a statistical approach and therefore its results are
not exact. However, we observe hardware induced problems
that go well beyond plain statistical inaccuracies. For exam-
ple, consider the loop shown in Figure 1. The loop is com-
prised of one basic block that iterates 104166667 times. If the
loop is sampled using a sampling period of 202001, then one
would expect each instruction in the loop’s body to receive ap-
proximately 104166667

202001 = 515.67 samples. The two columns



Fixed Sample Random Sample
Period Period PEBS

Abs. Norm. Abs. Norm. Abs. Norm. Loop
267 0.52 577 1.13 1554 3.01 00: add $0x1,%rdx
142 0.28 95 0.19 0 0.00 04: or $0x2,%rdx

1212 2.35 237 0.46 0 0.00 08: add $0x3,%rdx
272 0.53 532 1.04 447 0.87 0c: or $0x4,%rdx

0 0.00 523 1.02 1438 2.79 10: add $0x5,%rdx
1252 2.43 475 0.93 66 0.13 14: or $0x6,%rdx
269 0.52 502 0.98 1 0.00 18: add $0x7,%rdx
149 0.29 454 0.89 46 0.09 1c: or $0x8,%rdx

1197 2.32 512 1.00 504 0.98 20: add $0x9,%rdx
9 0.02 498 0.98 1402 2.72 24: or $0xa,%rdx

327 0.63 487 0.95 3 0.01 28: add $0xb,%rdx
48 0.09 724 1.42 116 0.22 2c: or $0xc,%rdx

1504 2.92 633 1.24 1833 3.55 30: add $0xd,%rdx
266 0.52 565 1.11 19 0.04 34: or $0xe,%rdx
141 0.27 762 1.49 260 0.50 38: add $0xf,%rdx

1219 2.36 999 1.96 1675 3.25 3c: or $0x10,%rdx
268 0.52 532 1.04 35 0.07 40: add $0x1,%esi

0 0.00 0 0.00 0 0.00 43: cmp %rcx,%rdx
1255 2.43 591 1.16 398 0.77 46: jbe 0

515.63 510.42 515.63 Average
541.21 222.45 677.56 StdDev

Figure 1. The sample counts measured on an Intel Clover-
town for a loop consisting of one basic block.

of numbers labeled Fixed Sample Period in the figure show
the actual samples collected on an Intel Clovertown machine.
The first column shows the raw count for each instruction and
the second shows the count normalized by the expected count
(i.e., 1.0 is the correct count, < 1.0 means the instruction was
undersampled, and > 1.0 means the instruction was oversam-
pled). We can see from this data, that the sample counts vary
by a factor of 2–3 from what they ought to be. In this sec-
tion, we describe these artifacts, and posit causes for these
anomalies. Section 4 will then introduce various approaches
to achieve more precise profiles at both the basic block level
and CFG level. We observed similar effects on a variety of
architectures from Intel and AMD.

3.1 Synchronization
If one selects a period that is synchronized with a piece of the
application, a few instructions will receive all of the samples.
For example, if a loop contains k dynamic instructions per
iteration, and the sampling period is selected as a multiple k,
then only one instruction in the loop will be sampled.

Randomization can avoid synchronization. Instead of us-
ing a constant sampling period, the PMU is configured so the
number of events between samples is the user provided sam-
pling period plus a randomly chosen delta. After each sample,
a new random delta is selected. Since the number of events be-
tween each sample is not constant, periodic properties in the
program being measured do not skew the sample.

Additionally, our empirical results show that random sam-
pling improves the uniformity of samples even in the absence
of synchronization. In the example in Figure 1, there are 19
instructions in the loop and the sampling period used was
202001 which is not a multiple of 19. Consequently, the un-
expected results should not be due to synchronization. How-
ever, when random sampling is used, one obtains the results
shown in the two columns labeled Random Sample Period

CPU CLK
INST RETIRED UNHALTED DTLB MISS Source

1957 5801 0 m = m + i;
1958 5965 0 m = m + i;
1942 5764 0 m = m + i;
3947 11634 0 x = rand() % size;

68551 340252 1047 m = m + test v[x];
38 2042 0 m = m + i;

105 5835 0 m = m + i;
13 5846 0 m = m + i;
7 5813 0 m = m + i;
3 5901 0 m = m + i;

3040 5912 0 m = m + i;
2027 5875 0 m = m + i;
2057 5883 0 m = m + i;

Figure 2. Aggregation Effect due to long latency instructions
measured on an Intel Clovertown.

in the figure. With randomization, the samples are more uni-
formly distributed. The average number of samples per in-
struction changed because the average sampling period was
204080 (rather than 202001) due to randomization. However,
notice that random sampling reduced the standard deviation
by a factor of almost 2.5.

Further experiments reveal that non-random sampling
leads to a form of pseudo-synchronization. Although a par-
ticular sampling period is requested, due to skid (described
in the next section) that is variable, yet systematic, the actual
sampling period is ultimately partially synchronized with the
loop. While this can be mitigated through careful non-random
adjustment of the sampling period for the particular code in
the example, random sampling proves more effective when
dealing with code with complex control flow and with vary-
ing amounts instruction-level parallelism.

3.2 Sample Skid
Ideally the PC reported when a counter overflows would be
the PC associated with the instruction that triggered the over-
flow. Unfortunately, the reported PC is often for an instruction
that executes many cycles later. This phenomenon is referred
to as skid. For example, previous work shows that on an Alpha
21064, the recorded PC corresponds to the instruction that is
at the head of the instruction queue 6-cycles after the one that
triggered the overflow [7]. On an Intel Clovertown machine,
we observed a similar phenomenon. The reported PC corre-
sponds to the instruction that is at the head of the instruction
queue some number of cycles (often approximately 30-cycles)
after the one that overflows the counter.

When using time-based sampling, this phenomenon is not
important as it only skews the sampling period [2]. However,
for frequency-based sampling, the effects of skid are impor-
tant. Figure 2 shows how this effect interacts with a long la-
tency instruction. Because long latency instructions sit at the
head of the instruction queue for long periods of time, they are
sampled disproportionately more than other instructions. Con-
sequently, instructions that trigger long stalls such as cache or
TLB misses will have abnormally higher sample counts com-
pared to other instructions in the same basic block. We re-
fer to this as the aggregation effect. These additional samples



should have been attributed to instructions after the stalled
instruction, however since they accumulate on the stalled in-
struction, instructions in the shadow of the stalled instruction
frequently have unusually low sample counts. We refer to this
as the shadow effect.

Previous work suggests accounting for this phenomenon
by approximating the amount of time that an instruction
spends at the head of the instruction queue [2]. Unfortunately,
estimating this quantity on a modern out-of-order, superscalar
processor with a deep cache hierarchy is difficult. In the next
section, we show how measuring other performance counters
can be used to help correct for this bias.

Modern Intel x86 processors provide precise event based
sampling (PEBS) which guarantees that the address reported
for a counter overflow corresponds to a dynamic instruction
that caused the counter to increment. Provided sufficient delay
between two back-to-back events, the address reported corre-
sponds to the instruction immediately after the one that over-
flowed the counter [6]. Unfortunately, when measuring in-
struction retirement, as the two columns labeled PEBS in Fig-
ure 1 show, sampling with PEBS actually yields lower accu-
racy than sampling without PEBS. This occurs due to bursts of
instruction retirement events near the counter overflow. These
instructions will not be sampled, once again leading to asym-
metric sampling. Since PEBS does not support randomized
sampling periods, non-PEBS sampling with randomized sam-
pling periods appears to be a more promising approach.

AMD processors, on the other hand, provide instruction-
based sampling (IBS) which is similar to the ProfileMe ap-
proach [7]. Unfortunately, this facility only allows sampling
instructions fetched (which include instructions on mispre-
dicted paths) or µops retired (which are at a finer granularity
than ISA instructions). Since the number of µops per instruc-
tion is unknown, using IBS also proves problematic [8].

3.3 Multi-Instruction Retirement
On most modern superscalar processors, more than one in-
struction can retire in a given cycle. For example, on Intel’s
Clovertown processor, up to four instructions can retire each
cycle. Unfortunately, the interrupt signaling the overflow of
a performance counter happens immediately before or af-
ter a group of committing instructions, and the performance
monitoring software records only one PC associated with the
group. Consequently, if a set of instructions always retire to-
gether, only one instruction in the group will have samples at-
tributed to it, and these samples will be the aggregation of all
the samples for the instructions it retired with. For example,
in Figure 1, observe that the cmp instruction receives no sam-
ples. While the precise cause cannot be known, it is likely be-
cause it commits with the instruction immediately preceding
it (they are not data dependent) or with the instruction imme-
diately following it (due to fused compare and branch in the
processor backend). Further, since the other instructions are
data-dependent, the instruction with address 0x30 will exe-
cute approximately 30-cycles later, and the data shows that it

has accumulated additional samples. We find similar effects
on other x86 architectures such as AMD.

Fortunately, as Figure 1 shows, this aggregation is fre-
quently contained within a single basic block due to the seri-
alization caused by branches. Consequently, while the sample
counts for individual instructions may show significant varia-
tion due to this effect, the basic block profiles derived by av-
eraging these samples across each block’s instructions exhibit
significantly less variability.

4. Improving Profile Precision
From the previous section, it may seem that profiles derived
from PMU sampling will be fraught with inaccuracies. How-
ever, as Levin et al. show MCF is an effective algorithm to de-
rive completely consistent basic block and edge profiles from
potentially inaccurate basic block profiles [12]. However, as
they also demonstrate, the quality of the derived profiles heav-
ily depend on the specific cost functions used in MCF. In gen-
eral, if the sample counts for a particular basic block are accu-
rate, the corresponding edges in the residual graph used during
MCF should be assigned a high cost. Conversely, if the sample
count is inaccurate, depending on whether the sample count is
too high or too low, the corresponding forward or reverse edge
in the residual graph should have a lower cost. Based on the
observation that basic blocks are often missed during profiling
(and therefore have a profile that is too small), prior work uses
a fixed cost for all edges, with forward edges having a signif-
icantly lower cost than reverse edges. This section details an
alternate approach for assigning edge costs. By sampling mul-
tiple performance counters, one can compute a confidence in
the accuracy of the profile for a basic block, and estimate if the
sample count is too high or too low. As our results indicate,
adjusting the cost functions used in MCF according to these
predictions significantly improves the quality of the derived
profiles.

4.1 Choosing the Profiles
As was discussed in Section 2, there are two primary ap-
proaches for obtaining a sample profile using hardware-event
sampling, the frequency-based approach and the time-based
approach. More generally, any of the myriad hardware events
exposed by the PMU can be used to derive a sample profile.
Consequently, it is unclear which event is best for estimating
the execution count of basic blocks. We propose using ma-
chine learning during compiler tuning to find the most relevant
events automatically. We use linear support vector regression
(SVR) [11] to quantify how various hardware events correlate
with the execution count of a basic block. SVR is similar to the
common least-squares linear regression, but uses a different
cost function for evaluating the deviation of predictions [18].
SVR is applied to a training set of hardware event values and
the exact execution counts of basic blocks obtained through
instrumentation (note, the instrumentation is only necessary
when training the regression model). Given a training set with
the true execution frequency of a basic block, and the normal-



Event Mask Counter Incremented Weight
INST RETIRED None when an instruction retires 0.43
INST RETIRED PEBS when an instruction retires 0.272
INST RETIRED 0 when no instruction retires in a cycle -0.1247
INST RETIRED 4 when 4 instructions retire in 1 cycle -0.1887
CPU CLK

UNHALTED None each CPU cycle 0.2131
DTLB MISS None when there is an DTLB miss -0.1124
L1I MISS None when there is an L1 I-Cache miss 0.0092

Table 1. Events and related weights from the SVM regression
model.

ized values of various sampled performance counters, SVR
attempts to find a vector of weights such that

F ≈
∑

i

wici + b

where F is the true execution frequency of a block, wi is the
weight for the ith sampled event, ci is the corresponding sam-
ple count, and b is a constant offset. The absolute value of a
weight signifies how well the particular sampled event corre-
lates with the true execution frequency; the sign of the weight
indicates whether the correlation is positive or negative.

Table 1 shows the results of applying this approach with the
SPEC CINT2000 benchmarks used as training data. Four dif-
ferent hardware events were sampled, and the INST RETIRED
event was configured with 4 different masks leading to a total
of 7 different profiles.

As expected, sampling the INST RETIRED event with
randomization has the best correlation to the true execu-
tion frequency of a basic block. The DTLB miss event has
a negative weight because it leads to many cycles of stall,
and consequently leads to aggregation effects. Other events
such as zero and multiple instruction retirements result in
a negative factor because of the aggregation effect. The
CPU CLK UNHALTED profile has a positive factor, but it is
less significant than random sampling of the INST RETIRED
event since, as was discussed earlier, time-based sampling
correlates with execution time not execution frequency. As
the micro-benchmark from Section 3 showed, using precise
event based sampling (PEBS) on the instruction retired event
has a lower positive factor than the corresponding event with-
out PEBS.

The automatically trained model shows which events could
serve as the principal ones to sample to estimate basic block
frequencies, and it also provides information about which
events can be used to supplement the principal profile. Unfor-
tunately, the SVM model cannot directly be used to convert a
collection of profiles into a basic block frequency estimate be-
cause of the regression constant b. This constant implies that
the estimated frequency of a block is non-zero even if no sam-
ple (across all the measured events) was attributed to it. Since
there are many blocks in a program which truly do not get
executed, using the model directly would yield poor results.
The next section describes an alternate strategy for using ad-
ditional hardware events to supplement the primary count.

4.2 Classifying Basic Blocks
Since the instruction retired event with random sampling
showed highest correlation to the actual execution frequency
of a basic block, we chose it as the base profile to estimate
basic block counts. Here, we present heuristics to predict the
confidence level of the instruction retired profile for a specific
basic block. High confidence means that the basic block sam-
ple count is predicted to be close to the real execution count.
Basic blocks with low confidence are further divided into two
categories, blocks where the sample count is predicted to be
larger(smaller) than the true execution count. The basic block
classification information is used by the edge cost functions in
the MCF algorithm to help make better smoothing decisions.

As was described earlier, there are two principal biasing
effects in the INST RETIRED based profile: the aggregation
effect and the shadow effect. Recall that the aggregation effect
leads to larger sample counts, and the shadow effect leads to
smaller sample counts. However, both these effects usually
coexist for a single basic block. Consequently, the goal of the
heuristic is to determine which effect, if any, is dominant for
a particular basic block.

Recall that aggregation occurs for long-latency instruc-
tions. For a fixed skid, D, a unit-latency instruction will be
sampled if the instruction that retired D cycles earlier over-
flowed the performance counter. However, since an instruc-
tion with latency L remains at the head of the instruction win-
dow between times t and t + L − 1, it will be sampled if the
counter overflowed anywhere betweenD andD−L−1 cycles
before the instruction issued. Consequently, an instruction’s
chance of getting sampled increases proportionally to its la-
tency. To model this aggregation, the compiler must estimate
the latency of each instruction. However, it is hard to mea-
sure latency since stall events are not attributed to the correct
instruction due to skid. However, our observations show that
most aggregation is caused by instructions that stall for sig-
nificant amounts of time (e.g., stalling due to a DTLB miss).
Events measuring these long stalls are generally unaffected by
skid and therefore are attributed to the instruction that caused
the overflow of the performance counter. Consequently, the
heuristic to model aggregation is restricted to events that lead
to significant stalls. The set of such events is selected once
when a compiler is being tuned for a specific architecture.

For each such event e, the stall duration (obtained from
processor manuals), stall duratione, multiplied by the sam-
ple count for the event, counte,i, gives the total number of
cycles that a particular instruction i stalled due to event e.
Summing over all such stall events for all instructions in a
basic block gives us an aggregation factor, A.

A =
∑

e

stall duratione ×

(∑
i∈BB

counte,i

)
The shadow effect can be modeled by comparing the to-

tal number of cycles spent in a basic block (as measured by
sampling CPU CLK UNHALTED) to the number of instruc-



tion retired events attributed to the block. The difference be-
tween these two sample counts is the shadow factor, S. Re-
call, that the delay in attribution does not affect time-based
sampling, implying that the CPU CLK UNHALTED sample
count should have proper attribution. Consequently, if S is
large, two possibilities exist. First, the basic block could legit-
imately have experienced high CPI. Alternatively, its instruc-
tion retirement samples could have been shadowed. In the first
case,A should also be large. Consequently if S � A then it is
likely that the block’s samples have been shadowed. In our im-
plementation, if S−A is greater than twice the raw basic block
count, the block is classified as under-sampled. Conversely, if
A > S and A is a significant fraction of the total number of
cycles spent in the block, then it is likely that the block has ag-
gregated too many instruction retirement samples1. In our im-
plementation, if A > S and A accounts for more than 50% of
the cycles spent in the block, it is classified as over-sampled.

Based on this classification, an MCF prepass is performed
on the binary level profile, with adjusted cost function for
basic blocks that are predicted to be over-/under-sampled. For
over-sampled blocks, its corresponding forward edge in the
residual graph is set as the maximum cost in the CFG, while
its reverse edge is set to 0 (and vice-versa for under-sampled
basic blocks).

5. Experimental Results
We evaluated the framework described in the previous sec-
tions by comparing the quality of refined sample profiles to
raw sample profiles and instrumentation profiles. Addition-
ally, we evaluated the performance of sampling-based FDO
by comparing the runtime performance of sample-FDO builds
with instrumented-FDO builds. All binaries were produced
using GCC version 4.3.2 targeting an x86 64. The sample pro-
files were collected using perfmon2 on an Intel Core2 Quad
2.4 GHz machine with a prime sampling period of 202001.
Random sampling, with a randomization mask of 0xFFF, was
used to improve the quality of the samples. With these pa-
rameters, a sample was taken after every 202001 + (rand()
& 0xFFF) instructions retired. All runtime performance mea-
surements were run on the Intel Core2 Quad 2.4GHz machine
used to collect profiles.

5.1 Precision of the profile
We used the degree of overlap metric [12] to evaluate the
quality of the profiles independent of the FDO optimizations
with which they will be used. The degree of overlap metric
compares the similarity of two edge profiles annotated onto a

1 The aggregation factor A may over-estimate the number of cycles spent in a
basic block due to stalls if some of the stalls are overlapped. In such cases, our
heuristic may assert that a block has aggregated too many samples when in
fact it has not. Our experience has shown that this mischaracterization occurs
rarely, if at all.

common CFG. The definition is as follows:

PW (e,W ) =
W (e)∑

e′∈E W (e′)

overlap (W1,W2) =
∑
e∈E

min (PW (e,W1) ,PW (e,W2))

whereW is a map from edges to weights,E is the set of edges
in the CFG, and PW computes the normalized weight of an
edge. If two profiles agree exactly, the overlap is equal to 1 (or
100%), the sum of the normalized edge weights over the CFG.
Conversely, if the profile weights differ for some edge, since
the minimum of the two is selected the overlap will decrease.
Consequently, the overlap can vary between 0% and 100%.

Figure 3 shows the overlap between the sample profiles
and the instrumented profiles for the SPEC CINT2000. The
first four bars are measured at binary level, which are derived
by comparing sampled profiles to edge profiles derived using
Pin [13]. We evaluate binary level overlap to isolate the PMU
sampling precision problem from source correlation problems
(see Section 5.2), and show how refinements can improve
the precision incrementally. The first bar shows the quality
of the raw profiles (converted to an edge profile using static
profile heuristics [21]). Comparing the first and second bar
shows that, on average, the MCF algorithm (as presented
in the literature [12]) improves the overlap by 17.8% when
compared with static estimation. Comparing the second and
third bars shows that by classifying basic blocks as over-
/under-sampled using multiple PMU profiles, the precision
can be further improved by 5.5%. The fourth bar shows the
potential of our refinement approach by classifying blocks
as over-/under-sampled using perfect profiles (obtained from
Pin) rather than using additional hardware events. Comparing
the third and fourth bars shows that our approach is only
2.3% worse (80.5% to 82.8%) than using perfect profiles for
basic block classification. However, as shown by the 5th bar,
when the profile is transformed to the source level and used
to annotate the CFG in GCC, the precision decreases by 4.6%
due to source correlation problems (see Section 5.2).

To estimate the potential for futher improvement, we com-
puted the function-level overlap of the sampled profile and the
true function profiles obtained using Pin. Function-level over-
lap is defined identically to the edge overlap except that W is
a mapping from a procedure to its weight. Since the heuris-
tics used to infer edge profiles from the sample profiles are
intra-procedural, the function-level overlap is an upper bound
to the edge overlap. The function-level overlap was measured
to be 91.7%, making the smoothed edge profile obtained us-
ing our algorithms within 10% of optimal. The imprecision
in the function-level profile can be explained by aggrega-
tion/shadow effects crossing procedure boundaries. The over-
lap when using a more aggressive compiler inline heuristic
(which reduces the chances of aggregation/shadowing across
procedure boundaries) increases the function-level overlap to
94.1%. These results suggest that inter-procedural smoooth-
ing algorithms may be a promising avenue of future research.



Figure 3. Edge overlap measures for SPEC CINT2000 benchmarks. Sampled FDO reaches an overlap of 80.5%.

Finally, to experimentally verify that using INST RETIRED
as the primary profile is best, we measured the overlap
using other hardware events. Since our enhancements to
MCF are tuned specifically for the INST RETIRED hard-
ware event, for fairness, the results presented here were ob-
tained using the original MCF algorithm. As expected, using
INST RETIRED with randomization achieved the best av-
erage overlap (75.1%), while using PEBS is slightly worse
(74.2%), and using CPU CLK UNHALTED achieved an av-
erage overlap of (72.6%) even with randomization.

5.2 Issues with Source Position Information
In addition to the challenges imposed by issues inherent to
hardware-event sampling, there are other challenges due to in-
accuracies in the source position information used to correlate
samples to the compiler’s IR. These challenges are outlined
here.

Insufficient Source Position Information One line of source
code can embody multiple basic blocks (e.g., consider any use
of the ternary ?: operator). In our current implementation,
samples originating from instructions corresponding to such
lines of code will be attributed to all of the corresponding ba-
sic blocks in the compiler’s IR instead of the specific block
for the instruction. We currently use source formatting to mit-
igate this issue, and, in the future, will rely on basic-block
discriminators2 to distinguish the different code regions.

Missing/Incorrect Source Position Information Source
formatting does not help in cases where there is incorrect
source position information. For example, even if each clause
in a ?: expression is on a separate line, GCC attributes all
the code for the expression with the first line. In other cases,
source position information is completely lost during opti-
mization [16].

Over/Under Sampling Due to Optimization Optimizations
such as loop unrolling etc., lead to some statements being du-
plicated in different basic blocks in the optimized binary used
for profile collection. Because the multiple basic blocks in the
binary correspond to one basic block in the compiler’s IR, the
profile normalization strategy will cause the profile for these
basic blocks to be too low. Conversely, optimizations like if-
conversion promote conditionally executed code to uncondi-

2 Currently being implemented in GCC.

Figure 4. Speedup for SPEC CINT2000 benchmarks. Sam-
pled FDO achieves 78% of instrumented FDO.

tionally executed code. This increases the likelihood that it
will be sampled thus causing its profile count to be too high.

5.3 Effectiveness of the framework
The true measure of quality for the profiles is how well they
enable feedback-directed optimizations. Figure 4 shows the
speedup obtained by using FDO over a baseline binary com-
piled without FDO. The baseline and FDO binaries were all
compiled using GCC with the -O2 flag.

On average, using profiles collected on an Intel Core2
processor, sample-based FDO with our refinements provides
an absolute speedup of 4.106%. This is 78% of the speedup
obtained by instrumentation-based FDO.

For some benchmarks (e.g. 186.crafty), sample-based FDO
outperforms its instrumentation-based counterpart. Since many
feedback-directed optimizations in GCC are driven by thresh-
old based heuristics, this difference is not surprising as subtle
differences in the profile can lead to substantially different
optimization decisions.

Detailed investigation into several benchmarks revealed
that most of the performance gap between sample-based
FDO and instrumentation-based FDO can be attributed to
source correlation problems. For 181.mcf, instrumentation
based FDO suffers a significant performance loss compared
to the baseline binary. Code layout decisions change a condi-
tional back edge jump in the baseline binary to a conditional
loop exit followed by an unconditional back edge jump in
an important loop. The latter code sequence suffers from sig-



Figure 5. Cross-validation of the speedup for SPEC
CINT2000 benchmarks. Sampled FDO achieves 72% of in-
strumented FDO.

Figure 6. Cross-validation of the speedup for SPEC
CINT2006 benchmarks. Sampled FDO achieves 60% of in-
strumented FDO.

nificantly higher branch misprediction leading to the perfor-
mance degradation. For the 252.eon and 253.perlbmk, the gap
between the instrumentation-based approach and sampling-
based approach is due to frequent use of the ternary(?:) op-
erator in one of the hottest functions in the benchmark. Un-
fortunately, samples for all instructions participating in the
statement will be allocated to a single source line (even after
source formatting) even though it corresponds to several basic
blocks. These benchmarks’ performance would no doubt im-
prove with better source position information. Further study
of an industrial application shows that loop unrolling is an-
other important source for the performance gap between the
two approaches. The instrumentation based profile can derive
exact loop trip counts, while the trip counts derived using the
sampling based profile is often off by a small amount. As a
result, with instrumented FDO, a loop may be fully-unrolled
for most frequent situations, while in sampled FDO it may
have some “left-over” iterations that degrade the performance.
Tuning the compiler’s unroll heuristics for the sample based
behavior could potentially ameliorate this problem.

One thing to note is that the above evaluations were not
cross-validated. However, they are good indicators of the ef-

fectiveness of our approach because FDO (both instrumented
and sample-based) performs best when the input data used
for profile collection is also used for performance evaluation.
However, to make the evaluation complete, we cross-validated
the performance improvements on both SPEC CINT2000 and
SPEC CINT2006 benchmarks. “Train” data sets are used to
collect both sampled and instrumented profiles. These profiles
are used in the FDO builds and performance is measured using
the “Ref” data sets. As shown in Figures 5 and 6, sampling
based FDO can achieve 72% and 60% speedup of instrumen-
tation based FDO, respectively.

We also evaluated the overhead incurred by profile col-
lection. Using a sampling rate of 202001, the overhead of
sampling ranges from 0.44% to 2.47%, averaging 0.74%. On
the SPEC benchmarks, compiler-based instrumentation in-
curs an overhead between 6.8% and 53.5%, and dynamic in-
strumentation tools, such as Pin, incur an overhead between
28.6% and 1639.2%. On an industrial web search application,
the compiler-based instrumentation suffered a 10x overhead,
compared to just over 2% overhead when profiled using hard-
ware PMU sampling.

6. Related Work
In a recent paper, Levin, Newman, and Haber [12] use sam-
pled profiles of the instruction retirement hardware event to
construct edge profiles for feedback-directed optimization in
IBM’s FDPR-Pro, post-link time optimizer. The samples can
be directly correlated to the corresponding basic blocks with-
out using source position information, as this is done post-link
time. As is done in this paper, the problem of constructing a
full edge profile from basic block sample counts is formal-
ized as a Minimum Cost Circulation problem. In this paper,
we extend their work by applying sampling to higher level
compilation (as opposed to post-link optimization) and show
how sampling additional performance counters can improve
the quality of sample profiles.

Others have proposed sampling approaches without rely-
ing on performance counters. For example, the Morph sys-
tem [22] collects profiles via statistical sampling of the pro-
gram counter on clock interrupts. Alternatively, Conte et al.
proposed sampling the contents of the branch-prediction hard-
ware using kernel-mode instructions to infer an edge pro-
file [5]. In particular, the tags and target addresses stored in
the branch target buffer (BTB) serve to identify an arc in an
application, and the branch history stored by the branch pre-
dictor can be used to estimate each edge’s weight. Both of
these works require additional information to be encoded in
the binary to correlate instruction-level samples back to the
compiler’s IR rather than using source position information
present in unstripped binaries. Additionally, neither work in-
vestigates the intrinsic bias of the sampling approach nor at-
tempts to correct the collected profiles heuristically. We do
however believe that edge sampling is a promising approach
and are evaluating extending our infrastructure using hard-



ware support for branch recording (for example the LBR stack
on Intel Core2 processors) to enable the approach with un-
modified commodity operating systems.

Other profiling methods build on ideas from both program
instrumentation and statistical sampling. For example, Traub,
Schechter, and Smith propose periodically inserting instru-
mentation code to capture a small and fixed number of the
branch’s executions [19]. A post-processing step is used to de-
rive traditional edge profiles from the sampled branch biases
collected. Their experiments show that the derived profiles
show competitive performance gains when compared with us-
ing complete edge profiles to drive a superblock scheduler.
Rather than dynamically modifying the binary, others have
proposed a similar framework that performs code duplication
and uses compiler-inserted counter-based sampling to switch
between instrumented and non-instrumented code in a con-
trolled, fine-grained manner [10]. Finally, stack sampling has
been used, without the use of any instrumentation, to imple-
ment a low-overhead call path profiler [9].

Similarly, there have been proposals that combine instru-
mentation and hardware performance counters. Ammons,
Ball, and Larus proposed instrumenting programs to read
hardware performance counters [1]. By selecting where to
reset and sample the counters, the authors are able to extract
flow and context sensitive profiles. These profiles are not lim-
ited to simple frequency profiles. The authors show, for exam-
ple, how to collect flow sensitive cache miss profiles from an
application.

Not surprisingly, performance counter sampling has also
been used in the context of just-in-time (JIT) compilation. For
example, Schneider, Payer, and Gross sample cache miss per-
formance counters to optimize locality in a garbage collected
environment [17]. Like our work, the addresses collected dur-
ing sampling have to be mapped back to the source code (in
their case, Java bytecode). However, since their optimizations
were implemented in a JIT, they simply augmented the in-
formation stored during dynamic compilation to perform the
mapping.

Specialized hardware has also been proposed to facilitate
PMU-based profiling. ProfileMe was proposed hardware sup-
port to allow accurate instruction-level sampling [7] for Alpha
processors. Merten et al. also propose specialized hardware
support for identifying program hot spots [14]. Unfortunately,
the hardware they propose is not available in today’s commer-
cial processors.

Orthogonal to collecting profiles, recent work has stud-
ied the stability and accuracy of hardware performance coun-
ters [20]. In that work, the authors measured the total num-
ber of instructions retired across a range of benchmarks on
various x86 machines running identical binaries. Their results
show that subtle changes to the heap layout, the number of
context switches and page faults, and differences in the defi-
nition of one instruction can lead to substantial variability in
even the total number of instructions retired as reported by
the performance counters. Unfortunately, the authors do not

study the artifacts in sampling the performance counters, and
the results on the aggregate data do not explain the anomalous
behavior observed in our experiments

7. Conclusion and Future Work
We designed and implemented a framework to use hard-
ware event sampling and source position information to
drive feedback-directed optimizations. By using multiple pro-
files and supervised learning to refine the profile precision,
sampling-based FDO can achieve good overlap with the true
execution frequencies and competitive speedups when com-
pared with the instrumentation-based approach. Moreover,
sampling-based FDO provides better portability and usability
while incurring negligible overhead. Our experiments show
that the proposed techniques are feasible for production use
on out-of-order platforms, and the precision/performance can
be further improved with more precise source position infor-
mation.

The results presented here represent an initial implementa-
tion. Our ongoing work is exploring the possibility of using
algorithms other than MCF to refine the precision of the pro-
file in the CFG. We are also investigating heuristics to avoid
precision loss due to code duplicating optimizations.

Further, while our current implementation focuses on gen-
erating edge profiles, we plan on exploring using other types
of profiles, such as cache miss profiles to guide code- and
data-layout optimizations, and branch misprediction profiles
to guide if-conversion. Ultimately, we believe these additional
profiles facilitated by hardware event sampling will signif-
icantly improve the profitability of feedback-directed opti-
mization.

8. Acknowledgments
We want to thank all the reviewers for their insightful reviews
and suggestions, which are integrated into the final version
of this paper. We would like to thank all the people on the
Google compiler team. Special thanks to Stephane Eranian for
his help in analyzing the behaviour of PMU based sampling.

References
[1] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting

Hardware Performance Counters with Flow and Context
Sensitive Profiling. Proc. of SIGPLAN Conference on
Programming Language Design and Implementation, Las
Vegas, Nevada, June 1997.

[2] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay
Ghemawat, Monika R. Henzinger, Shun-Tak A. Leung,
Richard L. Sites, Mark T. Vandevoorde, Carl A. Waldspurger,
and William E. Weihl. Continuous Profiling: Where Have All
the Cycles Gone? ACM Transactions on Computer Systems,
15(4):357–390, 1997.

[3] Thomas Ball and James R. Larus. Optimally Profiling and
Tracing Programs. ACM Transactions on Programming
Languages and Systems, 1994.



[4] Thomas Ball and James R. Larus. Efficient Path Profiling.
Proc. of ACM/IEEE International Symposium on Microarchi-
tecture, IEEE Computer Society, 1996.

[5] Thomas M. Conte, Burzin A. Patel, Kishore N. Menezes, and J.
Stan Cox. Hardware-Based Profiling: An Effective Technique
for Profile-Driven Optimization. International Journal of
Parallel Processing, 24(2):187–206, 1996.

[6] Intel Corporation. Volume 3B: System Programming Guide,
Part 2. Intel 64 and IA-32 Architectures Software Developer’s
Manual, 2008.

[7] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger, William E.
Weihl, and George Chrysos. ProfileMe: Hardware Support for
Instruction-Level Profiling on Out-of-Order Processors. Proc.
of ACM/IEEE International Symposium on Microarchitecture,
IEEE Computer Society, 1997.

[8] Paul J. Drongowski. Instruction-Based Sampling: A New
Performance Analysis Technique for AMD Family 10h
Processors. Advanced Micro Devices, Inc., November 2007.

[9] Nathan Froyd, John Mellor-Crummey, and Rob Fowler. Low-
Overhead Call Path Profiling of Unmodified, Optimized Code.
Proc. of International Conference on Supercomputing, Arvind
and Larry Rudolph, eds., ACM, Cambridge, Massachusetts,
June 2005.

[10] Nick Gloy, Zheng Wang, Catherine Zhang, J. Bradley Chen,
and Michael D. Smith. Profile-Based Optimization with Statis-
tical Profiles. Harvard University, Cambridge, Massachusetts,
April 1997.

[11] Steve R. Gunn. Support Vector Machines for Classification and
Regression. Ph.D. Thesis, University of Southampton, 1998.

[12] Roy Levin, Gad Haber, and Ilan Newman. Complementing
Missing and Inaccurate Profiling using a Minimum Cost
Circulation Algorithm. Proc. of International Conference
on High Performance Embedded Architectures and Compilers,
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