
VODCA: View-Oriented, Distributed, Cluster-based Approach to
parallel computing

Z. Huang† W. Chen‡
†Departments of Computer & Information Sciences

University of Otago, Dunedin, New Zealand
Email:hzy@cs.otago.ac.nz

M. Purvis† W. Zheng‡
‡Department of Computer Science

Tsinghua University, Beijing, China
Email:cwg@tsinghua.edu.cn

Abstract

This paper presents a high-performance Distributed
Shared Memory system called VODCA, which supports
a novel View-Oriented Parallel Programming on cluster
computers. One advantage of View-Oriented Parallel Pro-
gramming is that it allows the programmer to participate
in performance optimization through wise partitioning
of the shared data into views. Another advantage of
this programming style is that it enables the underlying
Distributed Shared Memory system to optimize consistency
maintenance. VODCA implements a View-based Consis-
tency model and uses an efficient View-Oriented Update
Protocol with Integrated Diff to maintain consistency of
a view. Important implementation details of VODCA are
described in this paper. Experimental results demonstrate
that VODCA performs very well and its performance is
comparable with MPI (Message Passing Interface) systems.

Key Words: Distributed Shared Memory, VODCA, View-
based Consistency, View-Oriented Parallel Programming,
Parallel Computing, Cluster Computing, Message Passing
Interface

1 Introduction

Distributed Shared Memory (DSM) is a convenient pro-
gramming platform for parallel computing on cluster com-
puters. It enables computing processes to communicate
with a virtual shared memory, instead of using message
passing. As we know, programming platforms based on
shared memory greatly relieve the complexity of parallel
programming. Unfortunately, the performance of currently
available DSM systems such as TreadMarks [1] is far from
satisfactory [6, 7], which renders them unusable, especially
on cluster computers.

In order to provide a high performance DSM sys-
tem on cluster computers, we have implemented a free
GPL licensed software–VODCA. VODCA stands for View-

Oriented, Distributed, Cluster-based Approach to paral-
lel computing. It implements a View-based Consistency
model [4] and supports a novel View-Oriented Parallel Pro-
gramming (VOPP) style [6]. Consistency maintenance in
VODCA is view-oriented, i.e., it is achieved based on the
unit of a view (part of the shared memory), not for the whole
memory space. Unlike traditional DSM systems, there is no
centralized consistency maintenance (e.g. at barriers) for
the whole memory space in VODCA. That is, in VODCA
no consistency maintenance is done at barriers by a bar-
rier manager. Instead, consistency maintenance in VODCA
is distributedto individual view acquisitions, which signif-
icantly improves the performance of consistency mainte-
nance [6]. Finally, VODCA iscluster-based, i.e., it is aimed
at providing an efficient DSM system on cluster computers.
Its performance was expected to be comparable with that of
Message Passing Interface (MPI) systems, which proves to
be true with our experimental results.

The rest of this paper is organised as follows. Section 2
illustrates the VOPP programming interface on VODCA
with some VOPP programs. Section 3 describes the key
techniques in implementation of VODCA. Section 4 com-
pares our work with other related work. Section 5 presents
the performance results of several applications. Finally,our
future work on VODCA is suggested in Section 6.

2 View-Oriented Parallel Program-
ming (VOPP)

VOPP is a novel parallel programming style [6] based on
the concept of view.

Definition 1 Properties of Views

• A view is a set of data objects in shared memory. Sup-
poseM is the set of total data objects in shared mem-
ory andVi is a view, then∀Vi, Vi ⊆ M .

• Views do not overlap with each other. Suppose there
are two different viewsVi and Vj , i 6= j, then
∀Vi∀Vj , Vi ∩ Vj = φ

• Views in shared memory should cover all data ob-
jects in shared memory. Suppose there aren views
V1, ..., Vn in total in shared memory andM is the set
of total data objects in shared memory, then

n∑

i=1

Vi = M

• Once created, a view must not be changed (Note that
views can be created and destroyed on the fly during
execution of a program).

There are a number of requirements for VOPP program-
mers.

• The programmer should divide the shared data into a
number of views according to the data sharing pattern
of the parallel algorithm.

• Shared data should be divided in a way so that each
view should consists of data objects that are always
processed as an atomic set in the program.

• When any data object of a view is accessed, view prim-
itives must be used (see below).

No explicit definitions of views are needed in a program.
The data objects in a view are decided by the programmer
in the algorithm. The programmer must allocate an identi-
fier to each view in the algorithm. When a view is accessed
in the program, view primitives must be used with the view
identifier as their argument. The association between data
objects and a view identifier is automatically detected by the
underlying system. This association will not be changed un-
til the view is destroyed. When we say a view is destroyed,
it means its association with data objects is removed and
its identifier can be used for new views. When we say a
view is created, it means its association with data objects is
established.

The following view primitives in C are provided by
VODCA to support VOPP:

• void Vdcacquireview(int viewid): acquire exclusive
write access to the specified view; the calling process
is blocked if the view is held by another process.

• void Vdcreleaseview(int viewid): release the speci-
fied view.

• void VdcacquireRview(int viewid): acquire read-
only access to the specified view; the calling process
gets an up-to-date version of the specified view.

• void VdcreleaseRview(int viewid): finish read-only
access to the specified view.

In current version of VODCA, a process can write only
one view at a time (in order that VODCA will be able to
detect modifications for only one view), but it can read
multiple views at the same time by using nested calls of
Vdc acquireRview. That is,Vdc acquireviews cannot be
nested butVdc acquireRviews can be nested.

VODCA also provides the following C interface.

• VDC NPROCS: the maximum number of parallel pro-
cesses supported by VODCA.

• VDC NVIEWS: the number of view identifiers avail-
able for use.

• VDC NPAGES: the number of pages in the shared
memory.

• Vdc nprocs: the actual number of parallel processes in
an execution.

• Vdc proc id: the process id, an integer ranging from0
to Vdc nprocs-1.

• void Vdcstartup(int argc, char **argv): initialise
VODCA and start remote processes.

• void Vdcexit(int status): terminate the calling process.

• void Vdcbarrier(unsigned id): block the calling pro-
cess until every other process arrives at the barrier.

• char *Vdc malloc(unsigned size): allocate shared
memory.

• void Vdcfree(char *ptr): free shared memory.

To illustrate the use of VODCA C interface, the follow-
ing parallel sum problem is used, whose memory access
pattern is very typical in parallel programming. In this prob-
lem, every process has its local array and needs to add1 it to
a shared array. We divide the shared array intoVdc nprocs
equally-sized views, and each of them is allocated an iden-
tifier in the range0 ... Vdc nprocs-1. In each outer loop,
every process works on a different view and adds its corre-
sponding local array elements to the view. In the first outer
loop, process0 works on view0, process1 works on view
1,and processVdc nprocs-1works on viewVdc nprocs-1;
in the second outer loop, process0 works on view1, pro-
cess1 works on view2,and processVdc nprocs-1works on
view 0; and etc. Finally the master process (process0) cal-
culates the sum of the shared array, which equals to the sum
of all local arrays. The VOPP program for this parallel sum
algorithm is as below.

1It could be a more complicated operation, but we use additionin order
to simplify the example.

int *shared_array, *local_array, a_size;

main(int argc, char **argv)
{
int i, j, s, e;
long sum;

initialise a_size;

Vdc_startup(argc, argv);

if(Vdc_proc_id == 0) {
shared_array =

Vdc_malloc(a_size*sizeof(int));
initialise shared_array;
}

local_array=malloc(a_size*sizeof(int));
initialise local_array;

for (i = 0; i < Vdc_nprocs; i++) {
s=(i+Vdc_proc_id)%Vdc_nprocs

*a_size/Vdc_nprocs;
e=((i+Vdc_proc_id)%Vdc_nprocs+1)

*a_size/Vdc_nprocs;

Vdc_acquire_view((i + Vdc_proc_id)
%Vdc_nprocs);

for (j=s;j < e;j++)
shared_array[j]+=local_array[j];

Vdc_release_view((i + Vdc_proc_id)
%Vdc_nprocs);

}

Vdc_barrier(0);

if(Vdc_proc_id==0){
for(j=0;j<Vdc_nprocs;j++)

Vdc_acquire_Rview(j);
for (i = a_size-1; i > 0; i--)

sum += shared_array[i];
for(j=0;j<Vdc_nprocs;j++)

Vdc_release_Rview(j);
}

}

Another VOPP example is using task queue for parallel
computing. The shared data in each task is regarded as a
different view and a unique identifier is allocated to the view
when the task is created. The task queue is a shared array
which is allocated a view identifier0. The code pieces of
the program are as below.

struct task {
int view_id;
char state;
char *task_data;

}

struct task *task_queue;
task_queue=Vdc_malloc(qsize);

/* task producer */
struct task t;
unsigned v;

v = get_unique_vid();
Vdc_acquire_view(v);
t.task_data=Vdc_malloc(tsize);
create_task(t);
t.view_id=v;
Vdc_release_view(v);
Vdc_acquire_view(0);
enqueue(task_queue, t);
Vdc_release_view(0);

/* task consumer */
struct task t;
unsigned v;

Vdc_acquire_view(0);
dequeue(task_queue, t);
Vdc_release_view(0);
v=t.view_id;
Vdc_acquire_view(v);
consume_task(t);
Vdc_release_view(v);

VOPP allows programmers to participate in performance
optimization through wise partitioning of shared data into
views. The rule of thumb for VOPP overhead is that, the
more view acquisitions, the more messages incurred in the
network; and the larger a view is, the more amount of data
transmitted in the view acquisition. Besides maximizing
parallelism, programmers should finely tune the program to
reduce both the number of view acquisitions and the size of
views.

VOPP does not place any extra burden on programmers
since the partitioning of shared data is an implicit task in
parallel programming. VOPP just makes the task explicit
by adding view primitives, which renders parallel program-
ming less error-prone in handling shared data. The pro-
grammer does not need to specify which data objects are in
which view in the program, as long as the same data objects
are accessed whenever the view is acquired.

The focus of VOPP is shifted more towards data man-
agement (e.g. data partitioning and sharing), instead of mu-
tual exclusion and data race as in traditional shared memory
based parallel programming. Mutual exclusion is automati-
cally achieved by VODCA system when a view is acquired
usingVdc acquireview. In this way, the bug of ”data race”
is removed from VOPP programs.

3 Implementation

VODCA is implemented entirely as a user-space library on
top of Linux. Modifications to the Linux kernel are not
necessary. Programs written in C are compiled and linked
with the VODCA library. VODCA is portable on modern
Unix systems, with some modifications to a small portion
of system dependent code such as the SIGSEGV signal han-
dler. Currently, we have tested VODCA on Linux/i386 and
Linux/Itanium.

VODCA implements the View-based Consistency (VC)
model [4]. When a view needs to be updated in VODCA,
an efficient consistency protocol called VOUPID (View-
Oriented Update Protocol with Integrated Diff) [5] is used.

VODCA is developed as an open source software under
GPL. For historical reasons, some of its design ideas, e.g.,
using SIGIO signal for receiving data from sockets, are the
same as in TreadMarks, but the code lines are re-written.
The authors would like to thank TreadMarks group for their
excellent work on the design of TreadMarks.

3.1 View-based Consistency (VC)

The consistency condition for the VC model is stated below.

Definition 2 Consistency Condition for View-based Con-
sistency

• Before a processPi is allowed to access a view by call-
ing Vdc acquireviewor Vdc acquireRview, all previ-
ouswrite accesses to data objects of the view mustbe
performed with respect toPi according to their causal
order.

A write access to a data object is said tobe performed
with respect toprocessPi at a time point when a subsequent
read access to that object byPi returns the value set by the
write access.

From the above condition, we know barriers have noth-
ing to do with consistency maintenance. All consistency
maintenance are distributed to view primitives. Removing
consistency maintenance from barriers has significantly re-
lieved the bottle-neck problem in the implementation of bar-
riers [6]. This bottle-neck problem has seriously affected
the performance of many TreadMarks applications such as
IS, especially when the number of processes is more than 8.

When a view is acquired, consistency maintenance is
restricted to the view. In this way consistency mainte-
nance is decentralized among the view primitives, rather
than centralized in barriers. In our current implementa-
tion of VODCA, a process can only modify one view be-
tweenVdc acquireviewandVdc releaseview. Therefore,
the data objects modified betweenVdc acquireview and
Vdc releasevieware counted into that view, and thus only
those data objects are updated when the view is acquired
later.

The write accesses to data objects of a view are detected
by the system. VODCA uses themprotectsystem call to
control access to shared pages. Any attempt to perform a
restricted access on a shared page generates a SIGSEGV
signal (i.e., page fault). The SIGSEGV signal handler ex-
amines the exception stack to determine whether the access
is a read or write, and responds according to the type of
access. Except at initial stage when pages are setempty
in all processes (except process0), DSM pages are always
readable in VODCA. After aVdc acquireview call is fin-
ished, all DSM pages are write protected. A write access to
a write protected page will cause a SIGSEGV signal whose
handler creates a twin copy of the page and makes the page
writable. When aVdc releaseview is called, a diff is cre-
ated for each of those modified pages through comparing
the page and its twin copy. The diffs of the modified pages
consist in the modifications of the corresponding view. Af-
ter aVdc releaseview is finished, all DSM pages are write
protected again.

We use a modifying session to represent modifications
of a view. A modifying sessionrepresents the modifica-
tions (i.e. diffs) made on a number of pages between
Vdc acquireviewandVdc releaseview. It is a data struc-
ture containing a list of page diffs. We make a modifying
session whenever a process finishes updating a view by call-
ing Vdc releaseview. When a modifying session is created,
it is associated with the related view whose id number is the
argument of theVdc releaseview that causes the creation
of the session. Note that when a session is created, diffs
of the modified pages are created immediately, instead of
being delayed as in TreadMarks. In this way we can avoid
mixing irrelevant modifications into the modifying session
and thus reduce the size of the session.

A version number is maintained for each view. Once
a modifying session is created, the version number of the
related view is increased by one. When a view is acquired
by a process we can decide if the view in the process should
be updated or not according to the version of the view of the
process and the latest version of the view.

3.2 The VOUPID protocol

During execution of a parallel program, with more and more
modifying sessions created for a view, more and more diffs
are created for the same page. This phenomenon is called
diff accumulating problem. To solve this problem, VODCA
uses the VOUPID protocol to merge diffs.

VOUPID is an update protocol for view consistency
which integrates all the diffs of the same page into a sin-
gle diff and then updates the page with the single integrated
diff. The diffs of the same page are thus merged together
if they are for the same view. In the protocol, a single in-
tegrated diff is maintained for each page of a view. When
a modifying session is created, the newly created diff of a
page is merged into the single integrated diff if it exists;
otherwise, the newly created diff becomes the single in-
tegrated diff of the page. Similar to an update protocol,
when a view is acquired, the single integrated diffs of the
view are piggy-backed on the view granting message and
then applied immediately to the corresponding pages of the
view. In this way, VOUPID reduces the number of mes-
sages and the amount of diff data. Moreover, it completely
removes those page faults that request diffs. For details of
the VOUPID protocol, refer to [5].

3.3 Exponential backoff timer in VODCA

VODCA implements inter-process communication using
the Berkeley sockets interface. It uses UDP/IP as the trans-
port protocol. Since UDP/IP does not guarantee reliable
delivery, VODCA uses a request/response model to insure
request arrival. When a request is sent, a response is ex-
pected no matter how simple the response is. If no response
arrives within a certain amount of time, the original request
is retransmitted. A timer is set when a request is sent and a
response is expected.

Since modern computer networks are very reliable, mes-
sages rarely get lost. In most situations that a timer expires,
the request is either for a held view or for an incomplete
barrier. That means, the request arrives at the destination
but the reply is withheld by the requestee waiting for some
conditions. In those situations, it is useless to retransmit the
request in a constant period as in TreadMarks. Rather the
retransmissions simply increase the network traffic and the
requestee’s workload, since receiving a message involves
interrupts, context switches, and the execution of several
layers of networking software and signal handler.

VODCA adopts an exponential backoff timer for retrans-
mitting possibly lost messages. The value of the timer is
first set as one second. Every time the timer expires, the
request is retransmitted, but the value of the timer is dou-
bled when the timer is reset. In this way, the number of
retransmissions is significantly reduced when the requestee
withholds the reply for a long time.

3.4 View ownership

For each view, a process is allocated as its manager. A
view manager keeps track of the ownership of the view. A
view acquiring request is first sent to the manager which for-
wards the request to the right process. Multiple processes
acquiring the same view withVdc acquirevieware formed
as a queue, called ownership queue, according to their re-
quests’ arriving order at the manager. A new acquiring re-
quest is forwarded by the manager to the last process in the
queue. When a process finishes a call toVdc acquireview,
the ownership of the view is transferred to the process. The
owner of a view has the up-to-date version of the view.

However, when a process callsVdc acquireRview, the
ownership of the view is not transferred to that process. The
read-only request is simply forwarded by the view manager
to the last process in the ownership queue. That process will
transmit the diffs of the view to the requester after it releases
the view.

4 Comparison with other related
work

The idea of restricting the scope of consistency in the VC
model is not new. There were some related work on re-
stricting the scope of consistency, e.g. Entry Consistency
(EC) [2] and Scope Consistency (ScC) [8]. Similar to VC,
both EC and ScC were aiming at reducing the cost of con-
sistency maintenance through restricting the scope of con-
sistency. However, their programming interfaces are very
different from VOPP.

VOPP is different from the programming style of En-
try Consistency in terms of the association between data
objects and views (or locks). Entry Consistency [2] re-
quires the programmer to explicitly associate data objects
with locks and barriers in programs, while the VOPP pro-
grammer just uses the view primitives to annotate the code
section that accesses a view. The data objects in a view are
detected and associated with the view automatically, instead
of being specified by the programmer as in EC programs.
Since the association is achieved dynamically, views can
contain dynamically allocated memory space, which cannot
be specified statically in the programs of Entry Consistency.
Therefore, VOPP is more flexible than the EC programming
style.

VOPP is also different from the programming style of
Scope Consistency (ScC) [8] in terms of the definition
of the concepts of view and scope. Once determined by
the programmer, views in VOPP are non-overlapped and
constant throughout a program, while scopes in ScC can
be overlapped and are merged into a global scope at bar-
riers. As we discussed and demonstrated in [6], consis-

tency maintenance in barriers suffers from serious bottle-
neck problem, which affects the performance of traditional
DSM programs as well as the ScC programs.

Programs based on ScC are extended from the tradi-
tional DSM programs, i.e., lock primitives are normally
used in those programs while scope primitives such as
openscopeare used only when required by memory con-
sistency. Therefore, the programming model provided in
ScC is a mixture. The programmer has to think of mu-
tual exclusion when lock primitives are used, but has to
think of memory consistency when scope primitives are
used. This blended programming model simply confuses
programmers. However, in contrast to the traditional DSM
programs, the focus of VOPP is shifted towards shared data
(views) rather than mutual exclusion. Programmers only
think of shared data (views) when view primitives are used,
while mutual exclusion and view consistency are left to the
underlying system.

Since ScC only optimizes consistency of local scopes,
the performance of programs without lock or scope primi-
tives, such as IS, SOR and Gauss in our benchmark appli-
cations, cannot be improved by ScC. In contrast, in VOPP
view primitives are always used to access views. Therefore,
the VOPP version of those benchmark applications can run
more efficiently than their ScC counterparts.

In addition, the diff integration in the VOUPID proto-
col can only be done when views are not modified in a
nested style. If views or scopes are modified in a nested
style, which is allowed in ScC programs and other tradi-
tional DSM programs, diffs from different views may mix
with each other and diff integration can result in incorrect
memory consistency. For example, suppose there are four
processorsP1, P2, P3, andP4, each of them modifies ei-
ther x or y or both, wherex andy belong to view 1 and
view 2 respectively, but are in the same page. As shown
in Figure 1,P1 modifies bothx andy in a nested style, so
the diffs for view 1 and view 2 have to be mixed with each
other. AfterP1 finishes accessingx andy, the diff created
by P1 is D1: < (x, 1), (y, 2) >, which contains the writ-
ten values of bothx andy. ThenP2 accesses and modifies
view 1, and create diffD2: < (x, 3) >; P3 accesses and
modifies view 2, and create diffD3: < (y, 4) >. Finally
P4 accesses both view 1 and 2 after the views are updated
usingD1, D2 andD3. However, if diff integration is ap-
plied in this example,D1 andD2 will be merged atP2 as
DM1: < (x, 3), (y, 2) >, andD1 andD3 will be merged
atP3 asDM2: < (x, 1), (y, 4) >. WhenP4 accesses view
1 and 2,DM1 andDM2 will be used to update the views.
No matter in which order to applyDM1 andDM2 at P4,
it will not be able to read both the up-to-date value (3) ofx

and the up-to-date value (4) ofy.
Note that when theacquireviews andreleaseviews in

Figure 1 are replaced withopen scope andclose scope (as

W(x,v): write value v to x R(x,v): read value v from x

W(y,2);
release_view(1);
release_view(2);

acquire_view(2);
acquire_view(1);

P1

release_view(1);

acquire_view(1);
R(x,1);
W(x,3);

P2

acquire_view(2);

release_view(2);

P3

R(y,2);
W(y,4);

release_view(1);
release_view(2);

acquire_view(2);
acquire_view(1);

R(x,3);
R(y,4);

P4

create diff D1
<(x,1),(y,2)>

create diff D2
<(x,3)>

create diff D3
<(y,4)>

W(x,1);

Figure 1: A failure scenario for diff integration

in ScC programs) oracquire lock andrelease lock (as in
TreadMarks) respectively, diff integration will result inthe
same incorrect memory consistency. Therefore, ScC and
TreadMarks cannot adopt the VOUPID protocol to improve
the performance of DSM systems.

Note that, if nested writable view acquisitions need to be
supported, a variant of VOUPID can be developed to cope
with the special case, though the protocol will become more
complex and less efficient.

Diff integration can only be done in a centralized way at
barriers for traditional DSM programs because of the above
problem. For example, TreadMarks integrates diffs at bar-
riers using garbage collection, and Brazos [10] integrates
diffs from local scopes into the diffs of the global scope at
barriers. In contrast, diff integration in VODCA is achieved
in a timely, distributed way, which is more efficient.

VOPP is very different from MPI. From programming
point of view, VOPP is more convenient and easier for pro-
grammers than MPI, since VOPP is still based on the con-
cept of shared memory (except the consistency of the shared
memory is maintained according to views). In addition,
VOPP provides experienced programmers an opportunity to
finely-tune the performance of their programs by carefully
dividing the shared memory into views.

Since partitioning of shared data into views becomes part
of the design of a parallel algorithm in VOPP, VOPP offers

the potential to make VOPP programs perform as well as
MPI programs. The reason is that a VOPP program can be
finely tuned so that its underlying message passing behav-
ior can match that of its MPI counterpart. That is, if there
is a finely-tuned MPI program, we can make a VOPP pro-
gram whose underlying message passing behavior is similar
to that of the MPI program. The VOPP program can imi-
tate the MPI program in a way that wherever there is data
transfer between processors in the MPI program, the VOPP
program allocates a shared view for the data and uses view
acquisition instead of sending and receiving data. In this
way, the overhead of message passing in VOPP can be al-
most the same as that in MPI program, since the cost of
view acquisition in VODCA is almost the same as that of
sending and receiving a block of data in MPI.

Though the message passing behavior of VOPP pro-
grams can be made similar to that of MPI programs, the
programming interface provided in VOPP is very much dif-
ferent from MPI. MPI programmers have to know where a
block of data is located, while location of a view is transpar-
ent to VOPP programmers. VOPP programmers only need
to worry about which view to acquire, but not the location
of the view.

Another difference between VOPP and MPI is that bar-
riers are badly needed in VOPP programs, while MPI pro-
grams normally do not need barriers. This difference has
significant impact on the performance gap between VOPP
and MPI, which has been discussed in [7].

5 Performance comparison

In this section, we present the performance results of sev-
eral applications coded with MPI, VOPP and the traditional
DSM programming style. The MPI applications are run on
MPICH [3], the VOPP programs are run on VODCA, and
the traditional DSM applications are run on TreadMarks [1].

The performance tests are carried out on an Itanium clus-
ter connected by InfiniBand network. The cluster consists
of 128 nodes running Linux kernel 2.4.21, 16 nodes of
which are used for performance evaluation. We run two
processes on each node, since each node has two 1.3 GHz
Itanium 2 processors with 4 Gbytes of memory. The page
size of the virtual memory is 16 KB. The C compiler used is
GCC 3.2.3. All programs are compiled with ”-O2” option.

We have tested VODCA, MPI, and TreadMarks on the
cluster with Integer Sort (IS), Gauss, Successive Over-
Relaxation (SOR), and Neural network (NN). Figures 2,
3, 4, and 5 have shown the speedups of the applications on
the three systems.

The figures show that the performance of VODCA
is comparable with that of MPI. For some applications,
VODCA performs even better than MPI. Since InfiniBand
is a fast network with low latency, the barriers running on

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Num Procs

Integer Sort: Speedup

MPI
VODCA

TMK

Figure 2: Speedup curves of IS

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Num Procs

SOR: Speedup

MPI
VODCA

TMK

Figure 3: Speedup curves of SOR

such a network is much faster than on Ethernet (refer to [7]
for results on fast Ethernet). Faster barriers can improve the
performance of both VODCA and TreadMarks, which ex-
plains why TreadMarks performs better for Gauss and SOR
on InfiniBand. For applications like Gauss, there is still a
small performance gap between VODCA and MPI due to
thousands of barriers used in Gauss. Detailed reasons for
this performance gap has been discussed in [7].

6 Conclusions and future work

Our experimental results demonstrate that VODCA is a
high performance DSM system. VODCA provides a con-
venient programming interface for parallel computing on

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Num Procs

Gauss: Speedup

MPI
VODCA

TMK

Figure 4: Speedup curves of Gauss

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

S
pe

ed
up

Num Procs

Neural Network: Speedup

MPI
VODCA

TMK

Figure 5: Speedup curves of NN

cluster computers and its performance is comparable with
that of MPI systems. It is encouraging to know that, with
a high bandwidth, low latency network such as InfiniBand,
VODCA can perform better than MPI systems for some ap-
plications.

We will use more applications to investigate the perfor-
mance gap between VODCA and MPI systems, especially
when the number of processors is large, e.g., up to 64 or
more processors. Techniques for fast barriers need to be
investigated when the number of processors is very large,
e.g., the order of hundreds or thousands. In order to make
VODCA a convenient platform for parallel computing, a
view-based debugger for VOPP programmers is needed in
the near future. For long-duration applications, a fault-
tolerant system is needed in VODCA to restore execution

when some computing node fails.

References

[1] Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu,
H., Rajamony, R., Yu, W., Zwaenepoel, W.: Tread-
Marks: Shared memory computing on networks of
workstations. IEEE Computer 29 (1996) 18–28

[2] Bershad, B.N., Zekauskas, M.J.: Midway: Shared
memory parallel programming with Entry Con-
sistency for distributed memory multiprocessors.
CMU Technical Report (CMU-CS-91-170) Carnegie-
Mellon University (1991)

[3] Gropp, W., Lusk, E., Skjellum, A.: A high-
performance, portable implementation of the MPI
message passing interface standard. Parallel Comput-
ing 22 (1996) 789–828

[4] Huang, Z., Purvis M., and Werstein P.: View-Oriented
Parallel Programming and View-based Consistency.
In: Proc. of the Fifth International Conference on
Parallel and Distributed Computing, Applications and
Technologies (LNCS 3320) (2004) 505-518, Singa-
pore.

[5] Huang, Z., Purvis M., and Werstein P.: View Ori-
ented Update Protocol with Integrated Diff for View-
based Consistency. DSM Workshop 2005, In: Proc.
of the IEEE/ACM Symposium on Cluster Computing
and Grid 2005 (CCGrid05), IEEE Computer Society
(2005)

[6] Huang, Z., Purvis M., and Werstein P.: Performance
Evaluation of View-Oriented Parallel Programming.
In: Proc. of the 2005 International Conference on Par-
allel Processing (ICPP05), pp.251-258, IEEE Com-
puter Society (2005)

[7] Huang, Z., Purvis M., and Werstein P.: Performance
Comparison between VOPP and MPI. In: Proc. of the
Sixth International Conference on Parallel and Dis-
tributed Computing, Applications and Technologies,
pp.343-347, IEEE Computer Society (2005)

[8] Iftode, L., Singh, J.P., Li, K.: Scope Consistency: A
bridge between Release Consistency and Entry Con-
sistency. In: Proc. of the 8th Annual ACM Symposium
on Parallel Algorithms and Architectures (1996)

[9] Keleher, P.: Lazy Release Consistency for distributed
shared memory. Ph.D. Thesis (Rice Univ) (1995)

[10] Speight, E.: Efficient Runtime Support for Cluster-
Based Distributed Shared Memory Multiprocessors.
Ph.D. Thesis (Rice University) (1997)

